The size of the Codenames word pool

Jimmy Jin

June 14, 2020

My coworker Christian posted an interesting problem in the company Slack the
other day:

Nerd snipe after playing some Code Names. Imagine you're playing
online and after 3 games you’ve seen a particular word appear in each
game. Estimate the total number of words the cards are chosen from.
(Each game independently choose 25 distinct words from a fixed set of
size N. What approximately is N7)

It’s understood that this means there was exactly one word which appeared in all
three boards, no more. Also, it’s allowable for a word to appear in two of the boards
but not all three.

How do we estimate this? It turns out that this is actually straightforward using
maximum likelihood.

Getting the likelihood

Let G1, G3, G3 be the set of words on the three codenames boards. G; and G5 don’t
matter. We only require that G contain exactly one word from G; N Ga. Call this
event F.

What’s the probability of E? It’s easier if we break it up. Let F} be the event that
|G1 N G2| = k. Then by the law of total probability,

P(E) =Y P(E|Fy)- P(Fy)
k=0

Computing the probability of each component is straightforward by counting:
o P(F) = () (20)/(35)
o« P(EIF) = (1)("4")/ (55)
5

In the expression for P(F}), note that there are (Qk) ways to choose exactly the k

cards in the intersection of G; and G, and then there are (;‘;_22) ways to choose

the remaining 25 — k cards which are not in the intersection.

Similarly, for P(E| F}) there are (k) = k ways to choose exactly one word from

1
G1 N G4 because we have conditioned on Fj, and there are ("2;]“) ways to choose

the remaining 24 words. This can be extended to exactly 2, 3, ...words in the
intersection in the obvious way.

Thus the final likelihood is
2O G)E2)

= () (35)

P(E) =

The MLE

I’'m not sure if the above expression can be simplified, but I definitely know that
I'm too lazy to simplify it. So it wrote a script to just find the argmax:

from scipy.special import comb

def intersection_of_k(n, k):
return comb(25, k) * comb(n-25, 25-k) / comb(n, 25)

def draw_exactly_one_from_intersection(n, k):
return comb(k, 1) * comb(n-k, 25-1) / comb(n, 25)

def total_prob(n):
terms = [intersection_of_k(n, k) * \
draw_exactly_one_from_intersection(n, k) \
for k in range(1l, 25+1)]
return np.array(terms) .sum()

for n in range(100, 200):
print(n, total_prob(n))

This gives an argmax of n = 125.

Method of moments

My friend John also pointed out that the MoM estimator for this is also n = 125,
obtained by solving the equation

n-(25/n)* =1

Since the left hand side is the expression for the expected number of times a single
word will appear in all three boards. Cool.

What else?

It’s natural to extend the problem in two ways:

e What’s the word pool size if I observe 1 < k < 25 words appears in all three
boards?

e What if I play the game N > 3 times and observe a word in exactly all NV
games?

I think the above approach generalizes to these extensions nicely. The first one is
just a simple modification of P(F | Fy) discussed above. The second is a little more
tricky, but essentially follows the same recipe. In fact, the approach feels like it
could be extended in a recursion for that latter case.

If you figure out the answer to these, let me know! Would be curious to visualize
the results.

