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1 Measure theory and probability basics

1.1 Algebras and measure

Definition. (Probability measure)

Let (S,S) be a measurable space. If, for a measure p, u(S) = 1, then we say p is a
probability measure.

Definition. (Random variable)

A measurable map X is a function from one measurable space (2, F) to another
measurable space (.5, 8) such that

X YB)={w:X(w)eB}ecF VBeS

If the target space (5,S) = (R, B(R)), then X is called a random variable. If the
target space is (R%, B(RY)), then X is called a random vector.

Remark. We often write {X € B} as shorthand for {w: X (w) € B}.

Theorem 1.1. If {w: X(w) € A} € F for all A € A and o(A) = S, then X is
measurable.

Proof. Note that
{w: X(w) e U2, B;} = U2 {w: X(w) € B;}

{w: X(w) € B°} ={w: X(w) € B}°

Therefore the class of sets B = {B: {w: X(w) € B} € F} is a o-field. Then

since B D A and A generates S, then 5D S.
O

Definition. (m-class, A-class)
Let S be some space and let £, A be collections of subsets of S.
A is a m-class if it is closed under intersections.
L is a A-class if
1. Sel
2. If A,B € L with AD B, then A\Be L
3. If {A,,} is increasing with A; € £, then lim,,_, 4, € L.
Theorem 1.2. (Dynkin’s 7 — A theorem)
For £ and A given above, LD A = L D o(A).
Lemma 1.3. (Identification lemma)

Suppose p1, p2 are probability measures on (S, S) and p;(A4) = p2(A) for all A € A.
If Ais a m-class and o(A) = S, then p;(A) = pa(A) for all A € S.



Proof. Define £ ={A € §|p1(A) = p2(A)}. Note that:
1. £L C Ais a m-class by assumption.
2. If we show that £ is a A-class, then the result follows.
To show the three properties of A-classes:
1. S € L because p1, ps are both probability measures.
2. To show that A D B € L = A\ B € L, use countable additivity.

3. To show that lim A4,, € £ for increasing {A,,} € L, use the continuity property

of measures.
O

Remark. (Lebesgue measure)
There exists a unique o-finite measure A on (R, B(R)) such that
Al(ab) =b—a

Thus to get the Uniform probability measure, simply restrict A above to [0, 1].
Uniqueness is shown by considering the 7-class

A ={(a,b],a <be0,1]}
and applying the identification lemma.

Definition. (Induced measure)

Let (51,81, 141) be a measure space and let (S2,S2) be another measurable space.
Let f: S1 — S be a measurable function. Then we can construct a measure o on
Sy (called the measure induced on S, by f) by:

uo(B)=m{s€S1: f(s)e B}, BeS;
If pq is a probability measure, then us is also a probability measure.
Definition. (Law/distribution, distribution function)
Let (Q, F,P) be a probability measure space.

1. The law or distribution of a r.v. X is the induced measure on (R, B(R))
using the original probability measure P on (€, F) and the function X:

w(B)=PlweN: X(w) e B), BeB(R)

2. The distribution function of a r.v. X is a function F' : R — [0,1] defined

by
F(z) = p((—o0,z]) =P(w € 2 : X(w) € (—o0,x])

that is, it is the law of x evaluated on the Borel set (—oo, z].

Remark. The distribution function has three basic properties:

1. 0 < F(x) <1 and F is non-decreasing.



2. F is right-continuous: z, \,z = F(z,) \ F(z).
3. limg oo F(z) =1, limy oo F(x) =0
Theorem 1.4. (Probability integral transform)

Suppose F' is a function satisfying the three properties of distribution functions
above. Then there exists a unique probability measure on (R, B(R)) whose distri-
bution function is F.

Proof. We know that the measure space ([0,1], B([0,1]),A), where A is the
uniform probability measure, exists.

Given F satisfying the three properties, define the map G : [0,1] — R by
G(y) = inf{z | F(x) > y}
From G, obtain the induced measure p on (R, B(R)) using A:
w(B) =A{s €[0,1]| G(s) € B}

1 is guaranteed to be a probability measure since A is a probability measure.
Then we see that

Fg(z) = p((—o00,7)) = A({y | G(y) < x})
Af{yly < F(x)})
F(x)

1.2 Integration

STUPID NOTATION NOTE:

Let (S,S, 1) be a measure space. Then the following are equivalent notations for
the integral of f with respect to u:

[ 1 ntas = [ 56 aut) = [ 7

Now let (S, S, i) be a measure space where i is o-finite. Define HT to be the space
of all non-negative measurable functions f : .S — [0, 00].

Theorem 1.5. There exists a unique map I : H* — [0, oc] such that:
1. I(14) = p(A)
2. flge Mt = I(f+9)=1(f)+1(g)
3. feEHT andc >0 = I(cf) = cI(f).



4. Let {f.} be a sequence of functions in H* such that f,(z) < foy1(z) for
each n. Also, let f be a function in HT such that f,(z) — f(z). Then

I(fn) = 1(f).
Proof. (Sketch)

First, we define some notation:

1(f) = /fdu:/sf(S) ds

1710 = [ fLadu= /A fdu

We proceed by the Nike method, also known as the Eminem method: to prove
the first property, we ”just do it” and define I(14) = u(A). Furthermore, for
a simple function f, = > .", ¢;14, where the A;’s partition S, we define

I(fn) = 2212 cin(Aq).

To show linearity, prove an intermediate result. Let 0 < f < L be a bounded
function. Then for a sequence of simple functions { fx } such that fi  f, then
I(fx) / limI(fi) also. Then define I(f) by lim I(fx) and show uniqueness.

To show monotone convergence, note that each f, has an increasing sequence
of non-negative simple functions {fy x}72; with limy_ oo frx(z) = fu(x) for
all x € X.

Also note that the sequence {gi} defined by gr(z) = max, <k fnr(x) is simi-
larly simple and increasing. Establish thte fact that for n < k,

frg(@) < gr(z) < fr(z)

and take limits in the correct order to show that {gx} converges to f. Then
take integrals of the above expression and then take limits again to show the
main result (using the definition of an integral as the limit of integrals of
simple functions).

Example. (Counting measure)

Let the o-field F = 2V and let f : N — [0,00). Also, let u be the counting measure
on F, that is:

p(A) = |A| = the number of elements in A, VA e F

The question is: how do we calculate [ fdu? First, define g, by:

{f(i% i<n

gn(0) 0, otherwise

Note that g,  f and that g,(s) = > 1" f(i)L{y)(s), so g is simple. We know



how to integrate simple functions:

n

/ g (s) dpa(s) = S FDu({i})

=1

Then, invoking our theorem, we send n — oo in the expression above to obtain the
integral [ fdu.

Lemma 1.6. Suppose f € HT and suppose there exists a set A, u(A) = 0 such
that f(s) =0 on s € A° (f can be infinite on A). Then [ fdu = 0.

Example. Let hy, he be such that hy = hy a.s. Then u({s|h1(s) # h2(s)}) = 0.
Example. Let {f,}, f be such that f,, — f a.s. Then p({s|fn(s) - f(s)}) =0.

Next, we discuss the notion of integrability of a function, which is simply a term
for whether or not a given function has a finite integral. First, we formalize some
notation.

1. For z € R: z is 7 = max{z,0} and 2= = max{—=z,0}.
2. For ameasurable function f: fT(s) = max{f(s),0} and f~(s) = max{—f(s),0}
3o f=fr—fTand|[fl=f"+[".

Definition. (Integrable function)

A measurable function f is integrable if:

/f+du<oo and /ffd/,t<oo

And for a general (not necessarily non-negative) measurable function f, we define

the integral as:
[ran=[rrau- [ 5 a

Theorem 1.7. For integrable functions f and g on a measure space (S, S, i), the
following properties hold (all integrals with respect to measure p):

1. Fora,beR, [af+bg=a[f+b[g
2. f>0ae. = [f>0

3. f=0ae. = [f=0

4. f>gae. = [f>[g

5. f=gae. = [f=[g

6. [SfI<[If]



Definition. (Absolutely continuous)

Let p and v be measures on a o-field S. We say v is absolutely continuous with
respect to p (written v < p) if

WA =0 = v(A)=0, AcS

The general setup of the theorem is the following: let u be a o-finite measure and
let f > 0 be a measurable function. Define the set function:

o) = [tarau= [ fa

It can be easily checked that v is a measure and that u(A) = 0 implies that v(A)
= 0 also, so that v < p. The Radon-Nikodym theorem gives us the following in
addition:

Theorem 1.8. Let v, i be measures with v < p and p o-finite. Then there exists
an a.e. unique measurable function f such that

VAES, ”“:Af@

We call f the Radon-Nikodym derivative or density, written f = g—z.

Lemma 1.9. Suppose pu is o-finite, f > 0, g > 0 are integrable, and the following

property holds:
VA e S, /fdu:/gd,u
A A

Then f =g a.e.

Theorem 1.10. (Change of measure)

Let X be a function (Q, F,P) — (5,S) and let p be the measure on S induced by X.
Let h : S — R be measurable and furthermore let E(|A(X)]) = [ |h(X)|dP < oo.
Then:

BH(X) = [ M) P = [ h(s)dn(e

S

Example. Let B be our space of infinite coin tosses from before. Our underlying
probability space is (B>, 0({A,}),P), where an element of B> is given by

w € B® = (w1, wa,...)

Let X : B> — R be defined by X(w) = w;. We are interested in calculating the
expectation of the function of our random variable: h(z) = sin(z).

By our theorem,
E(sin X) = / sin(X (w))dP = / sin(wy) dm
o R

where m is Lebesgue measure on B(R).



1.3 Inequalities

Lemma 1.11. If ¢ is a convex function on an open subset I C R, then for any
xo € I there exists a support line [y such that

lo(x) <¥(x) Veel and Ilo(xg) =(xo)
Proof. Convexity gives us two facts:
1. For any h > 0, applying the definition of convexity with o = 1/2 gives:

Y() = bl —h) _ b+ h) — ()
h - h

2. For any hy > ho, applying the definition of convexity with o = ha/hq gives:

() —P(x — hy) < Y(x) — h(x — ho)
hl B h2

By (2) the sequences are monotone so their limits as h — 0% exist, so define:

W (@)= tim YO TYETN g @) = i PETR Y@

h—0+ h h—0+ h
By (1), ¢/ (x) < ¥, (x) for any z.
Then, for fixed z, choose some a € [¢)’_(2),v’ (2)] and define the line ¢ by:
l=(x) = ¢(2) +a(z — 2)
Clearly £(z) = ¢(z) and by monotonicity of limits, it is easy to see that
ly(x) <y(x) Veel

Theorem 1.12. (Jensen’s inequality)

Let g be convex on I, an open subset of R. Let x € I with probability 1 and assume
X, g(X) have finite expectation. Then

9(EX) < E(g(X))

Proof. First note that EX € I. So let {(x) = ax + b be the support line for
g(-) at EX. Then by the definition of support line we have

1. {(EX) =g(EX)
2. l(x)<g(x) Vxel
Taking expectations in (2) above, we obtain:
Eg(z) > El(z) = E(ar+b) = aEX+b = {(EX)

Then noting (1) above, we are done.



Theorem 1.13. (Holder’s inequality)
If p,g > 1 and % + % =1, then for any random variables X,Y,

E(XY]) < (BIX[P)"/?(ElY|")!/

Proof. (Sketch)
Fix y > 0. Consider f(z) = % + % — zy. By finding the minimum of f(x),
we can show that f(x) > 0 for all . Then, choose

RY Y]

BlxP) 7 (B[
and take expections of both sides of the inequality.

Theorem 1.14. (Markov’s inequality)

Suppose X is a real valued random variable, and ¢ : R — R a positive function.
Fix any set A € B(R) (e.g. A = [a,0)). Define i4 to be inf{¢(X) : X € A}.

Then,
iAP(X € A) < E(p(X))

Proof. Note )(X) > i4 - Lxca. Take expectations.

O
Example. Suppose X > 0,9(X) = X, A = [a,00). Then,
aP(X > a) < EX
Similarly,
" P(IX] > a) < E(IX]")
Example. Let Y > 0 and EY? < co. Then:
(EY)?
P(Y >0) >
Proof. Apply Holder’s inequality to Y - 1y ~g.
O

1.4 Convergence notions

Theorem 1.15. (Relationships between notions of convergence)

L X, 25 X «— Pw:|X,(w) —X(w)|>e€io0)=0 Ve>0
2. Xp = X = Plw:|Xn(w)— X(w)|>e) =0

3. X, 25 X = EX,-XPP—>0

14X, B x = x, 5x



Theorem 1.16. X,, <5 X = X, i> X

Proof. Since X, % X then by Egorov’s theorem X,, £ X. Then for any
§ > 0 there exists a set B; € F with P(B;) < ¢ and X,, % X on Q\ Bs. So
for any € > 0, there exists an N (e, d) € N such that, for all n > N,

| Xn(w) — X(w)| <e YweQ\B
In other words,
IN(e,d) s.t. P(| X, — X|>€) < forn>N

We can send § — oo by letting N — oo, which gives us the definition of
convergence in P.

O
Theorem 1.17. X, L—p> X for some p >0 = X, LS
Proof. By an application of Markov’s inequality using ¢(X) = | X ¥,
a® P(|X|>a) <E|X*
Take k = p. Apply to the r.v. |X,, — X|, with A = [¢,00) so that a = e:
E|X, — X|P
P(|Xn — X[z ¢) < ElXn - X
P
O

Theorem 1.18. If X,, =% X and X,, L—l> Y, then X =Y a.s.

1
Proof. Since X,, = Y, then there is a subsequence {X,,} that converges
a.s. to Y (see section on Borel-Cantelli lemmas for proof).
O

Example. LP convergence does not imply a.s. convergence, even if the sequence is
bounded.

Example. a.s. convergence implies L? convergence if the sequence is bounded.
Theorem 1.19. (L? weak law)
Suppose X1, X5, ..., X, are r.v.’s such that
1LEX;=p Vi>1
2. E(X?)<c Vix>1
3. E(X,X;) =EX, -EX;, Vij
Then

10



Proof. We want to show that E{[1 " X; — ,u]2} —0,n — oo.
Note that E(L 3~ X;) = p. Then we have

(e} o)
= v ()

== ZVar(Xi) + Z E(X:X;) - EX;EX}]
i i#£]

By our covariance assumption, the rightmost term is zero. Also, note that
Var(X;) = E(X?) — (EX;)?
<c+u?

So our final expression reduces to

1 2 n(z + u?)
E{{nZXi“}}SnQ —0asn— o0

Theorem 1.20. (Bernstein’s theorem)

Suppose f : [0,1] — R is continuous. Then 3{f,}n>1, fn = n'® degree polynomial
such that

sup |fn(z) — f(z)] > 0asn— oo
z€(0,1]

Proof. Let x1,2a,...,&p,... be independent r.v.’s with P(z; = 1) = 2 and
P(xz; =0) =1 — z, where z € [0, 1] is fixed.

Consider the functions:

=3 (1) a-o=s (%)

n=0

Note that, if S,, = the sum of the first n x;’s, then

o2l (3)

We want to show that limsup,c( 1) |fo (%) — f(2)| < € for all € > 0, so consider

11



the quantity |f.(x) — f(2)|:

=FK “f (%) — f(z) ‘ . ]l|Sn"z|<6:|
ol () s

for fixed 6 > 0. Now note two facts:
L. sup,¢p,1) f(2) = M < oo due to continuity of f and compactness of [0, 1].

2. f is continuous: for any € > 0, 30 > 0 such that if [*= — x| < §, then
|f(52) = fla)l <e

Therefore we have that

o[ (2)- 0 ]

And that

2[|7(%) -0l 1

<e{]7 (%) | tiaeaoa] +2 (17| 15
(Triangle inequality)

<E [M' 1\%—»5} TE [M'l‘%—f‘”}
:2M-IP’(‘€:—$‘ >5)

Var(%)
52
(Markov’s inequality)
p(1—p)
no?
1 M

<2M - — = ——
- 4né?  2no?

<M -

=2M -

And finally, putting the two pieces together, we have

Vz € [0,1]

al@) = F@) S et 50

12



Then since this is true for all n and the RHS sequence is monotone decreasing
in n with limit €, then

fu(@) = f(z)| < e

lim sup
n—00 1¢[0,1]

Note that the use of Markov’s inequality in the above step is required to free
the probability P (|57” —z| > 5) from dependence on z.
O

Theorem 1.21. (Skorohod’s representation theorem)

If X, A x , then there are r.v.’s Y,; and Y defined on some joint probability triple
with F'x, = Fy, and Fx = Fy for all n, such that Y, L5y,

Proof. Let ([0,1], B([0,1]),m) be the uniform probability space where m is
the uniform probability measure (Lebesgue measure). Define the random
variables: Y and Y, : ([0, 1], B([0,1])) — R by

Y(y) = inf{z|Fx(z) >y}, Ya(y) =inf{z|Fx,(z) >y}
From Y and Y}, obtain the induced measures py and py, on (R, B(R)) by
py (B) =miy € [0,1][Y(y) € B}

py, (B) = m{y € [0,1]|Y,(y) € B}

wy and py, are probability measures since m is a probability measure. To
show that Fx = Fy (the argument for Fy, = FYy, is exactly analogous), note:

Fy(z) = py ((—o0,2)) = m({y | Y (y) < x})
=m({y|y < Fx(x)})
= Fx(.’t)

The process to show that Y, £% Y is the following. Since we used the
probability integral transform to get corresponding random variables on the
uniform probability space, we show a.s. convergence on the uniform prob-
ability space. So we fix ¢ € [0,1] and show that liminf, Y, (¢c) > Y(c) and
limsup,, Y,,(c) < Y(c)

First note that if Y is not continuous at ¢, then since there are only count-
ably many discontinuities, each discontinuity is a singleton with zero measure.
Therefore we can define Y (¢) = Y,,(¢) = 0 to obtain a.s. convergence at that
point without affecting the distribution function.

So assume that Y is continuous at c.
1. liminf, ¥,,(c) > Y (c¢)

Fix € > 0. Since Y is continuous at ¢, we can find an a € R such that
Y(c)—e < a <Y(c). Thus Fy, (a) < ¢ by definition of ¥;,. Then since Fy, —
Fy, for large enough n we can find Fy, (o) < ¢ as well. By monotonicity, then
Y(e) — e < a < Y,(c) for large enough n. Thus liminf, ¥, (c) > Y (c).

13



2. limsup,, ¥,,(c) <Y (c¢)

Fix € > 0. Let d € [0,1] be such that ¢ < d and Y is continuous at d. Then
there exists a such that Y(d) < a < Y(d) + e. By definition of Y, we have
¢ <d< Fy(Y(d) < Fy(a). Since Fy, — Fy, for large enough n we can
find ¢ < Fy, () also. Thus by monotonicity, Y, (¢) < a < Y(d) + € for large

enough n. Thus limsup,, Y, (c) < Y(c).

1.5 Independence

Definition. (o-field generated by a family of r.v.’s)
The o-field generated by Xi,...,X,, is the set

o(X1,...,X,) _U{Ug(xi)}

Or, equivalently,

o(X1,..., X { )yee s Xn(w)) € A, AEB(R”)}
Remark. o(Xy,...,X,) is NOT the same as {N?_, X, '(B;), B; € B(R)}.
This is because B(R") = B(R) ® ... ® B(R) where

BR)®...® B(R) = o{(B,...,By), B: € B(R)}

by the definition of product spaces and their associated sigma-algebras, so
B(R") is larger than the n-Cartesian product of B(R)’s.

Lemma 1.22. o(X;,...,X,,) is precisely the set
o ({Miu X (Bi), Bi € B(R)})
Proof. Define the following sets:
S1 = Uil 0(Xi)
Sz = {1 X; ' (Bi), Bi € B(R)}
We show that o(S1) = 0(Ss).
1. S DO Sy

Let S be an arbitrary element of S;. Then S € o(X}) for some k. Then

S = X, *(B) for some B € B(R). Therefore S can be written as X, '
(Nize X; ' (R)) = X, 1 (B) N, s0 S € So.

2. 82 C 0(81)1

Note that S, is precisely the set of all elements in S; union all their countable
intersections. Since o(S;) is a o-field, then it includes all countable intersec-

tions of Sj.

14



Therefore since S is contained inside o(S1), then o(S2) C o(S1). But since
82 D &1, then 0(Sz2) D 0(S1). Therefore o(Sz) = o(S1)
O

Corollary 1.23. o(Xy,...,X,,) is precisely the set: o ({N;A;, A; € o(X;)}).
Definition. (Independence of two objects)

1. Events: A, B are independent if P(AN B) = P(A4) - P(B).

2. o-fields: Bj, B, are independent o-fields if (1) holds for all A € By, B € Bs.

3. Random variables: X,Y are independent random variables if (2) holds for
their corresponding generated o-fields o(X) and o(Y).

Remark. If two random variables are independent, then they are defined on
the same probability space.

Theorem 1.24. (Equivalent characterizations of independence)
Let X : Q— (51,51) and Y : Q — (S2,S2). TFAE:
1. X,Y are independent.
2. Forall Ae S;and B S, P(X € A,Y € B)=P(X € A)-P(Y € B).

3. Suppose A; C 81, Ay C S; are m-classes which generate their corresponding o-
fields. Thenforall A € A4;,B € Ay, P(X € A,Y € B) =P(X € A)-P(Y € B).

4. For all bounded measurable functions hy : S1 — R and hs : S5 — R,
E[h1(X) - ho(Y)] = E[h1 (X)] - E[h2(Y)].

Remark. Note that if X, Y are independent, then the last characterization (4)
holds if
E[h3(X)] < oo and E[h3(Y)] < oo

Proof. We prove (1) = (2) = (3) and then (2) < (4).
(1) implies (2):
Consider any A; € 1, A; € So. Note that
P(X € A)=P{w: X(w) € A1})
P(Y € A2) =P({w : Y(w) € A3})
P(X €A,V € A)) =P({w: X(w) € A1} N{w: Y (w) € A3})

By assumption, X and Y are independent, so that o(X) and o(Y) satisfy the
condition that

VA, € O(X),AQ € J(Y), P(Al n AQ) = P(Al) . IP)(AQ)

Changing notation and using the definition of o(X) and o(Y"), this is equiva-
lent to the statement that, for any By € &1, By € So,

P{w: X(w) € Bi}N{w: Y(w) € By})
= }P’({w : X(w) S Bl}) ]P)({UJ : X(w) € BQ})
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Letting By = A; and By = A, shows that

P(X € A1,Y € A3) =P(X € Ay) - P(Y € A2)

(2) implies (3): Trivial.
(3) implies (2): By the 7-\ theorem.
Define:

Li={AeS |P(X €AY eB)=P(X € AP(Y € B)VB € A}

Note that Ly D A;. If we can show that Lq is a A-class, then since A; is a
m-class, we will have shown that L; D o(A;), or that Ly D 8. Since Ly C Sy,
then we will have shown that L; = S;.

To show that L is a A-class:
1. Ly contains the whole space S:

Note that P(X € S) = P(X~1(9)) = P(Q) = 1. Therefore since X,Y are
defined on the same space, then P(X € S,Y € B) =P(QNY1(B)) =P(Y €
B).

2. L is closed under proper differences:

Let Ay, Ay € Ly such that A1 D As. Note that A; \ Ay € S since S is a

o-field. Note:

P(X € (A1 \ A2),Y € B) =P([X 1(A4))\ X H(4A)]nY Y(B))
=P(X (A NY B\ [X ' (A2) nY1(B)))
=P([X ' (4) nY(B)]) - P([X '(42) N Y 1(B)))
=P(A1)P(B) — P(42)P(B)
=P(A;\ Az) - P(B)

Where in the above steps we have used the facts that X,Y are measurable
functions defined on the same space (2, and that [P is a measure on a o-field.

3. Lj is closed under monotone increasing limit

Let {A,}52, be an increasing sequence in L;. Since S; is a o-field, then
> 1A, € 81 and also we can re-write US2; A, as a disjoint union US2 G, €
S;1 where
Gn = An \ U?:lanla Gl = Al

16



Then note:
P(X € U*A4,.Y € B) = ]P’(X € UGy, Y € B)
(UOOG,L) Ny~ (B))
U°°[ HG)NYH(B))

Il
=R

)yNY1(B))

|P”18

:i P(X € G,) -P(Y € B)

(X € U®G,) -P(Y € B)
P(X e U*A,)-P(Y € B)

Where in going from the fourth to the fifth line we have used the fact that
L, is closed under proper differences, and the sequence {G,,} is a sequence of

proper differences of sets in L.

Thus we have shown that L; is a A-class and that, therefore, L; = S§;. Next,
define:

I?={Be&|P(X €AY cB)=P(XcAP(Y € B)VA<€ S}

Note that, by the result shown at the top, L? O As. By a similar proof to the
one above, it can be shown that L? is a A-class. Then since Ay is a m-class,
L? D o(Ap), or that L? D S,. Since L? D Sy, then L? = Ss, as desired.

O

(4) implies (2)
Fix A€ S; and B € Sy, and let hy(X) = 14(X), ho(Y) = 15(Y).
(2) implies (4)

Independence of X and Y implies that (4) holds at least for indicator functions

hy = 14 and ho = 1. This can be extended to simple functions, and then

to bounded measurable functions using approximation by simple functions.
O

Definition. (Pairwise independence)

Let By, ..., By be o-fields such that, for all ¢ # j, B; and B; are independent. Then
we say {B;}i1<i<n is pairwise independent.

Definition. (Independence of countable collections)
Three characterizations:

1. Suppose By,...,B, C F are o-fields. Then {B;}i1<;<, is independent if,
for any Ay € By,..., A, € By,

n

P(N"A;) = [[P(A:)

17



2. Suppose Ay,..., A, are arbitrary subcollections of F. We say A;,..., A, are
independent if, for any I C {1,2,...,n} and i € I, A; € A,

P(NicrAi) = H P(A;)

iel
3. Suppose Ay, ..., A, are arbitrary subcollections of F. Define A ={Q0,A¢€
A;}. Then Ay, ..., A, are independent if, for all A; € A;,

n

PNy Ai) = [T B(4)

i=1

Remark. What is exactly the difference between the second and third char-
acterization? In the second, we do not force the intersection to be over all n
in each I. In the third characterization, we always force the intersection to
be over all n. But since we can always set A; = €2 for any j = 1,...,n in the
third characterization, then the two characterizations are equivalent.

Definition. (Independence of arbitrary collections)

Suppose {B, : @ € J} where B, C F and J is an arbitrary index set. We say that
the B,’s are independent if any subcollection is independent.

That is, for n > 2 and a; # ag # ... # ay, € J, {Ba, }1<i<n are independent.

Theorem 1.25. Suppose {B;}1<i<n are sub-o-fields of F and A; C B; where A;
is a w-class that generates B;.

If the {A;}1<i<n are independent, then the {B;}1<;<», are independent.

Theorem 1.26. If X;,..., X, are independent, then X;,..., X; is independent of
Xj+1,...,Xn for 1 < j<n.

Proof. By a previous result,
o(X1,...,Xn) =0 ({NL1X; '(B:), B; € BR)})
Note that {N?_, X; ' (B;), B; € B(R)} is a 7-class that generates o(X1, ..., X,,)

and apply the setup to Xi,...,X; and X;4q,..., X,.
O
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2 Zero-one laws and stopping times

2.1 Borel-Cantelli lemmas

Definition. (lim sup and lim inf of a sequence)
Let A,, be a sequence of subsets of 2. Then
1. limsup 4,, = lim;, 00 U2 A, = {w that are in infinitely many A, }
2. liminf A,, = lim,, 0o N2, A, = {w that are in all but finitely many A, }

Remark. Why are these sets given the name ”lim sup” and ”lim inf”? Because:

limsupla, = Liimsupa, and liminfla, = Liminfa,
n—00 n—oo

Definition. (Infinitely often)

Let A, be a sequence of subsets of . Then limsup A,, = {w : w € A,, i.0.}, where
i.0. stands for infinitely often.

Lemma 2.1. (Very weak lemmas)
1. P(A,, i.0.) > limsup,,_, . P(A,)
2. P(A,, occurs ultimately) < liminf, . P(A;)
Proof. We prove the first. The proof for the second is analogous.

Define B,, = U2, A,. Note that this is a decreasing sequence with limit

A, i.o..
O

Lemma 2.2. (Borel-Cantelli 1)
Let A, be a sequence of elements of F. If > > | P(4,,) < oo, then P(4,, i.0.) = 0.

Proof. By definition of lim sup, we have that limsup A,, C USS_, A,,. There-
fore:

P(limsup A,) < P(UZ_, A,)

Z P(A4,,) for anyn

m=n

IN

n

m—1 P(Ap,) converges.

Since o7 | P(A,,) < oo, its sequence of partial sums

n=1
Therefore Y °_ P(A,,) = 0 as n — oo.
O

Lemma 2.3. (Borel-Cantelli 2)

Let A,, be an independent sequence of elements of F. If Y >°  P(A,) = oo, then
P(A, i.0.) = 1.
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Proof. Let M < N < oco. By independence and the identity 1 —x < e™*, we
have:

N
P(MinAn) = ] (1 —P(40))

N
= exp (— Z ]P’(An)> -0 as N—o oo
n=M

Therefore since P(N92,,AS) = 0, then P(UX_,,A,,) = 1. Since this holds for
arbitrary M and U2 ,, A, decreases (in M) to lim sup A,,, then P(limsup 4,,) =
1 also.

O

Remark. If {A,} is an independent sequence, then applying the contrapositive
of Borel-Cantelli 2 shows that the converse of Borel-Cantelli 1 holds.

To see that it does not hold in general, let the measure space be given by
([0,1], B([0,1]),m) where m is Lebesgue measure. Consider the sequence of
events A, =[0,1/n] forn=1,2,....

How can we use the Borel-Cantelli lemmas to show convergence a.s.?

Lemma 2.4. X,, =% X if and only if for every e > 0,
1. limy oo P(| X, — X[ < eforalln >m) =1
2. limy, 00 P(| X, — X| > € for some n > m) =0
Proof. We show each direction separately.
(=)

Suppose that X,, “% X. Fix € > 0. Define Qy = {w: X,,(w) — X(w)}. By
assumption, for every wy € Qg there exists N(wp,€) € N such that

n> N(wo,€) = | Xn(wo) — X(wo) < e

Thus for any such wy € Qq, there exists some corresponding N (wq, €) such
that wo € NP2 n (0 .6) {w: | Xn(w) — X(w)| < €}. Therefore,

Qo = U My {w s [Xn(w) = X(w)| < €}

The union is over a sequence of sets increasing to {2y which has probability 1,
so by continuity the union has probability 1. And finally note:

R B (X = X < e} = Jim M3y {IX, — X[ < o)
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Define A(e) = UF_; N2y {| X, — X| < €}

By assumption, this set has probability 1 for all e > 0. For any w € A(e),
there exists some N (w,€) such that n > N(w,e) = |X,(w) — X(w)| <e.

To show X,, — X at some point wy with P(wg) > 0, we only need to show
that we can select an increasing sequence of such N’s corresponding to € | 0,
eg. e=1/n:

N(WOa 1)7 N(w()v 1/2)7 N(WOa 1/3)3 s

We can do this only for wy € NS, A(1/n). But since P(A(e)) =1 for all e > 0,
then N2 ; A(1/n) must also have probability 1 and we are done.

O
Lemma 2.5. X,, % X if and only if for all € > 0, P(|X,, — X| > € i.0.) = 0.
Proof. Note that:
{1Xn—X|>cio}= (] J{Xn—X|>¢}
m=1n=m
And use the second iff condition in the previous lemma.
O

Theorem 2.6. Suppose Xj,... 7Xniifjexp(l). So we have P(X; < z;) =1—¢e77
and f(x) =e™® for x > 0. Then:

X, P
L s —0

. . X, -5
2. limsup,,_, Togn 1

3. Let M,, = max{Xy,...,X,}. Then lg/g["n %1

Proof. In order.
Proof of (1)
Note simply that:

“

Xn
logn

—0‘ > e> =P(X,, > elogn)

= exp(—elogn)
1

ne

Proof of (2)

We show limsup,,_, 15;"71 <1 and limsup,,_, lg(g"n > 1. This is equivalent

to showing that, for any € > 0,

P Xn >1+¢€20.)]=0 and P Xn >1—¢€t0. | =1
logn logn
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To show the first, observe that:

which is summable, so the result follows from Borel-Cantelli 1. To show the
second, note that

P(X, > (1+4¢€)logn) =

nl—e
is not summable, so the result follows from Borel-Cantelli 2.

Proof of (3)

We show the result by showing that liminf M, - > 1 and lim sup 1

For the first, we show P ( <1-—c¢ z'.o.) =0:

(Fen=t-e)
<l-—ce¢
logn

P
(1 —(1 e)logn)

(1-5=)
< () = e

Which is summable, so the result follows by Borel-Cantelli 1.

log

* (iogi =*~)
logn —

The second follows immediately from a deterministic fact:

Let {zp}n>1, n > 1 be a sequence of real numbers. Suppose {b,}n>1 is
another sequence which increases to oco. Then

. T . My,
limsup— =a = limsup-— =«
n—oo n n—oo n

where m,, = max{zy,za,...}.

To prove this, fix 7 > 1 and note that, since b, T oo,

limsup{max{xl’ - ’m”}} - hmsup{max{xj,xﬂh .. ,xn}}
n

) Tk
§hmsup{max{b ]<k<n]}
k

n—oo

Tp
k>5 | b
Letting j — oo, we have

limsup{max{xl"”’x"}} < lim sup {b }
n k

n—00 b J—=0 |>j

= limsup { }
n—oo
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Observing that lim sup 5= > lim sup i—: completes the proof.

n

O

Remark. The point of this whole example is to show that convergence in prob-
ability does not necessarily imply convergence a.s.

Lemma 2.7. Let {X,}>2; be a sequence of measurable functions (random vari-
ables). If, for any € > 0, P(|X,, — X| > €i.0.) =0, then X, Tox.

Proof. Note that P(|X,, — X| > € i.0.) = P(limsup | X,, — X| > €).
Also note {lim |X,, — X| > €} C {limsup |X,, — X| > €} for any n, so

ImP(| X, — X| >¢€) < P(limsup |X,, — X| > €)

O

Theorem 2.8. X, — X if and only if for every subsequence {X,,, };>1 there is a
further subsequence {ank }k>1 that converges a.s. to X.
To prove this theorem, we first prove a deterministic lemma:

Lemma 2.9. Let y,, be a sequence of elements of a topological space. If every
subsequence y,,, has a further subsequence yp,, —that converges to y, then y,
converges to y also.

Proof. Assume, on the contrary, that vy, - y. Then there exists
1. an open set I containing the limit y and
2. a subsequence ¥, such that y, ¢ G for all m.
but then obviously no subsequence of ¥, can converge to y, a contradiction.
O
We now prove the main result.
Proof. The proof is a simple application of the first Borel-Cantelli lemma.
(=)

Assume X, L. X. Fixa subsequence { X, };>1. Clearly X, L X oas well,
so that for any € > 0,

P(|X,, —X|>¢) =0 asj— o0

Let {ex}x>1 be a positive sequence which | 0. Since the above holds for any

e > 0, then we can sequentially find a subsequence n;, > n; _, > ... such
that 1
P( X, — X2 ) < o
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Therefore we have

o0

> 1
> P X, — X[ >e) < 227 < o0

Thus by the first Borel-Cantelli lemma, P(|X,; — X| > € i.0.) = 0 and
therefore Xy, i 'S

(<)

Assume that, for every subsequence {X,,,};>1 there exists a further subse-
quence {ank ti>1 such that Xn,, 2% X as k — oo.

Fix € > 0. Define y, = P(]X,, — X| > €). By assumption and the fact that
convergence a.s. implies convergence in probability, there exists a further
subsequence (of some intermediate subsequence) {X,; }r>1 such that

Yn;, = P(|Xn;,, — X[ >€) =0 ask— o0

Since every further subsequence (of some intermediate subsequence) is con-
vergent to 0, then by our deterministic lemma, vy, itself is convergent to 0.

Thus X, — X.
O

Theorem 2.10. (Dominated convergence theorem)
If X, — X and |X,| <Y with E(Y) < oo, then
1. EX; - EX
2. E(|X, — X|) = 0

Proof. Suppose X, 2 X. Given any subsequence {n; }, there exists a further
subsequence {n;, } such that Xn,, 2% X. By DCT, then we have

EX,, —EX
Tk

Define the sequence of real numbers {y,} by v, = EX,,. Since, given any
subsequence {yy, } j>1, there exists a further subsequence {ynjk }e>1 that con-
verges to EX, then by our previous deterministic lemma we have

yn =EX, > EX
O

Remark. Note that this result only requires convergence in probability, not
convergence a.s. as is normally required in the statement of DCT.

Theorem 2.11. (Miscellaneous note)
Let {X,}n>0 be a sequence of random variables. Then:

U {Xn > —L Vn} = {inf X,, > —o0}
L=1
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Proof. If some w is in the LHS, then it is in {X,, > —L¢ ¥n} for some Lj € N.
Thus the sequence {X,,(w)} is bounded below at that value and so is in the
RHS.

The exact opposite argument works to showing that some w in the RHS is
also in the LHS.
O

2.2 Filtrations and stopping times

Consider an infinite sequence of random variables X, Xo, ... defined on a common
probability space (Q, F,P). The o-field generated by the first n random variables
is:

Frn={B={w: X1(w),..., X, (w) € A}, A€ B(R")}

This is a o-field since the X;’s are measurable and all intersections and unions
between elements in each induced o field are included. Since sets of those form
generate the Borel o-field on R and all X;’s are measurable, we can also write:

Fon=c{{w: Xij(w) <z1,..., Xpnw) <zpn}, z1,...,2, € R}

From the first formulation, it is easy to see that if we take A = A; x R and
A; € B(R"™1), then
Fn1 CFn

Definition. (Filtration)

A collection of sub-o-fields {F,, },>1 is a filtration if it satisfies
FiCFyCF3C...

Remark. In general, we want to think of these sub-o-fields as partial information.
A o-algebra defines the set of events that can be measured. Therefore a fil-
tration is often used to represent the change in the set of events that can be
measured, through gain or loss of information.

Another interpretation of a filtration involves times. Under a filtration, we
can view the set of events in F; as the set of ”questions that can be answered
at time ¢,” which naturally carries the ascending/descending structure of the
filtration.

Lemma 2.12. Fix n > 1. Under the usual filtration, a random variable Y is
Fn-measurable if and only if:

Y =g(X1,...,X,)
where g : R” — R is a deterministic measurable function.

Proof. (Sketch) Consider an arbitrary F,,-measurable indicator function 1 g (w).
By definition, it looks like:

15(w) = 1a(X1 (@), ..., Xn(w)) = g(X1,..., X,), A€ BR")
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Therefore simple functions also have this general form, and thus general mea-

surable functions also have this form.
O

Definition. (Stopping time)

A random variable 7: Q — {1,2,...} U{oc} is a stopping time with respect to
the filtration {F,},>; if, for any n,

{w:T(w)=n}eF, Vn
Corollary 2.13. The above condition is equivalent to the condition:
{w:T(w)<n}eF, ¥n

Proof. Fix n > 1.

Assume the first definition. We have that: {r <n} = U ,{r =i}. The RHS
is a union of events which are all individually € F,, since the probability space
is filtered. Thus the entire RHS € F,,.

Assume the second definition. Then the event {7 < n — 1} € F,_; and thus
is also € F,, since the probability space is filtered. Since F,, is closed under
set difference, then

{r=n}={r<n}\{r<n-1} e F,

Corollary 2.14. {T = oo} € Fo, where Fu is defined by Foo = (U F,).
Proof. Trivial.
Example. (Hitting time)

Let a filtration be given by F,, = o(X1,...,X,). The hitting time of (0, co) defined
below is a stopping time:

T=inf{n >1: X, >0}
To see this, fix n > 1 and note that {T =n} = ﬂ?;ll{Xj <0} n{X, > 0}.
Example. The following is not a stopping time:

T=sup{n>1:X, >0}
To see this, fix n > 1 and note that {r = n} = {X,, >0} N {N%2, ., {X; <0}}.

Example. (Warning)

Even the most innocuous finite a.s. stopping time can have a surprisingly infinite
expected value. Consider a symmetric simple random walk {X,,} with S,, = >." X.

Let T =inf{n > 0: S, = 1}, i.e. the hitting time to 1. We show that ET = cc.
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Since X, is symmetric, with probability % we have T' = 1. Also with probability

2, we have T = 14T’ +T" where T, T" are iid copies of T. To see why this is,

if S = —1, then to get back up to +1 we need to first return to 0 which takes
T’ steps, and then return to +1 which takes T" steps. Since stopping times are
non-negative, we can take expectations and use linearity regardless of finiteness:

1 1
ET = -1+ (1+ET' +ET")

Using ET = ET” = ET”, we obtain that ET must satisfy ET = 1 + ET', which has
a unique solution = oo.

Theorem 2.15. (Wald’s lemma)

Let X1, Xo,... be iid with E(|X;|) < co and E(X;) = u. Let 7 be a stopping time
with respect to the filtration F,, = o0(Xj,...,X,) such that E(r) < co. Define the
random sum: S; = > 7, X;. Then:

ES, =E(r) - E(Xy)
Proof. Observe that:
Sr=)Y X lic,
i=1

Consider {i < 7} for fixed i. Because {i < 7} = {7 <i—1}°and 7 is a
stopping time,

{Tgi—l}e]:i_l = {iST}Efi_l

The X;’s are independent, so X; is independent of F;_;. In particular, X;
and 1,<, are independent. Therefore:

E [Z 1 X;| - Ticr
i=1

=Y E[|Xi|- 1<,] (by MCT)
i=1

= EIX;|-Pi<T)
i=1

=E|Xy|-Y P@i<r)
=1

= E|X,| - E(7) < 0o

Noting that >":°, X;-1,<, is dominated by Y .=, |X;|-L;<;, we can now show
the full result by dominated convergence:

E [Z X; - LST} = ZE[Xi 1i<;] (by DCT)
=1 =1

=> EX;-P(i<T)
i=1

=EX; -E(r) < 0
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Example. (Usage of Wald’s lemma)
Suppose X; are iid with

x, L op=12
~1, p=1/2

Let 7 =inf{n : S,, = 30 or — 10}. Is this a stopping time?

It is easily checked that E(7) < co. Now note that ES, = 0 since EX; = 0 (to show
this more rigorously, use the stopped process S;a, and apply DCT). Therefore:

0=30-P(S, = 30) + (—10) - (1 — P(S, = —10)

And solving gives us that P(S; = 30) = 1/4.

2.3 Kolmogorov zero-one law

Definition. (Tail-after-time-n o-field)
Let X, X5, ... be random variables. Define F,, = o(Xy,...,X,) as usual. Then:
1. The o-field generated by X, Xs,... is:

foo = U(U;-)ila'(Xl,...,Xj))

2. The tail-after-time-n o-field is:
En = O'(Xn+1, Xn+27 .. ) =0 (U(;CZI U(Xn+17 N 7Xn+j))

Definition. (Tail o-field)

Observe that £,, defined above is a decreasing sequence in n. We call the limit the
tail o-field of X, Xo,...:

T=n0"0Ly =N 10(Xn, Xnt1,---)
Example. The event {limsup X,, > 2} € T
To see this, define the set
Ay ={w: X, (w)>2—-1/q i.0.}

An intuitive interpretation of A, is as the set where X,, goes above and stays above
2 —1/q. Now note that {limsup X,, > 2} = N2, A,. Therefore to show that the
limsup is in the tail field, it is sufficient to show that A, € T for all gq.

Note that A, can be written: N°_; Up>m {X, > 2 —1/¢}. Fix some k > 1. Then:
Aq = mfrf:k Unz'rn {Xn > 2 — l/q}

as well. Thus for any k£ > 1, A, belongs to L.
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Example. The event {lim S, < oo} € T.
Apply the Cauchy criterion of convergence.
Example. The event {w : limsup S,, > 2} ¢ T.
i.e. this event "depends” on the first few r.v.’s.

To see this, let X; =3, Xo = -3, X5 =3, X, = —3,... Then S, alternates between
0 and 3 and so limsup S,, = 3 > 2 which is OK.

However, if we change X; = —10 and leave the rest of the sequence alone, then
limsup S, = —10 < 2.

Theorem 2.16. (Kolmogorov zero-one law)

Suppose X1, Xo,... are independent. Let A € T, the tail field of X7, X5,.... Then
either P(A) =0 or P(A) = 1.

Remark. A more elegant proof than the one presented below can be found in
the section on martingale convergence theorems.

Lemma 2.17. With the setup of the Kolmogorov zero-one law, fix n > 1. Then
o(Xy,...,X,) and L, are independent.

Proof. The definition of £, is:
Ly,=0 (U;?';lo(XnH, LX)

Note that U?‘;la(XnH, ..., Xn+j) is a m-class which generates £,,. Therefore,
we only need to show that P(A4; N As) = P(A4;) - P(As) for

Al € O'(Xl,...,Xn) and A, € U?‘;IU(Xn+1,...,X7L+j)

By this definition, then Ay € 0(Xp41,. .., Xntx) for some k > 1.

Lemma 2.18. o(X;, X2,...) is independent of T.

Proof. Write o(X1, Xa,...) = 0(U2,0(X1,...,X;)). By the m-class argu-
ment, we only need to show independence of:

Aleu;‘;lU(Xl,...,Xj) and A, eT

Observe that A; € o(Xy,...,X}y) for some k > 1. Also, by definition of T
As € 0(Xk41,...) for the same k. Invoke the previous lemma.
O

Proof. (of Kolmogorov zero-one law)

Fix A € T. Since o(Xy,Xo,...) D L, for all n, then o(X;,Xs,...) D
N ,L, = T. Since A € 0(X1,X2,...) and A € T also, then A is inde-
pendent of A by the previous lemma.

O
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3 Laws of Large Numbers

3.1 4'® moment/L? strong laws, Glivenko-Cantelli

Theorem 3.1. (4" moment strong law)
Let {X;}i>1 be iid with EX; = p and E(X}) < co. Then 5= *% ;.
Lemma 3.2. If EX; = 0, then E(S2) < 3n?E(X}).
Proof. Note that:
4
E(S,) =E {(Z Xz-) } = 3 E(X:X; X))
Iy

Note that the RHS expression is zero if there is at least one index which does
not equal one of the others. For example, E(X;, X2, X3) = 0. Therefore,

E(5!) =Y E(X}) + (;) > E(X?XF)
i
= nE(XY) + 3n(n — E(X2X2)
< nE(X}) + 3n(n — DE(X})

Where the last step follows from the Cauchy-Schwarz inequality.

Proof. (of 4" moment strong law)

Let EX; = 0. We show that % 2% 0 or, equivalently, ]P’(|‘%"\ > € i.0.) = 0.

Note:
e
n

Which is summable, so we can invoke Borel-Cantelli to obtain the result.
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3E(XY)
n2et

O

Lemma 3.3. Suppose {4,,},>1 is an independent sequence of events with P(4,,) =
pfor all n > 1. Then 3 14, =5 p.

Proof. Let X,,(w) = 14, (w). Check assumptions and apply the 4" moment

strong law.
O

Theorem 3.4. (L? strong law)
Let {X;}i>1 be a sequence of random variables such that

1. EX; =0Vi
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2. EX? < cVi
3. E(X0X,) = 0Vi £
Then 2" X;/n = S,/n 2% 0.
Lemma 3.5. Let {S,},>1 be a sequence in R. If:

1. there exists a subsequence {n(j)},;>1 with n(j) 1 co such that %‘((j)) -0

2. for dj = max,(j)<n<n(j+1) |Sn — Sn(;)| We have % —0asj— o0

Then S,/n — 0

Proof. Fix an n(j) < n.

[Snl _ |50 = Sn) + Sngp

n n
- ISn()| + S0 — Snep)l
n
S, i _
< | '(_])| —&——dj_ —0 asj— o0
n(j)  n(j)

Proof. (of main result) Fix n(j) = j2, 7 > 1. We proceed in two steps:

Step 1: show that
Snj) _ Sj as,

nG) -2 0

This follows immediately from Borel-Cantelli. Note that

Var(Sj2) _ cj? c

.2 _
P[|Sj2] > €j°] < e S Gig = pa
which is summable over j.
Step 2: show that
D
,—;2 2% 0, where Dj» = max |Sn — sz|
J J2<n<(G+1)?

We show this again by Borel-Cantelli. First observe that, by assumption,
E(S, —S;) = 0 for all 0 <i < n. Also, note E[(S, — S;)?] = Var(3_},, X;) <
c(n —1i).

Second, observe that

) (j+1)? )
Dj = P<nt () [Sn = 832" < ZZ [Sn = 52|
=J
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Therefore we have

E[(D;»)?]

74

P(D,2 > €j?) <
(J2 6])— €2j

_E hatark |Sn - 5p[°]

— 62]4
i+1)2 .
YUY e(n—4?)
= €2j4
ek i) +2)
Ol _

€ 2¢244

/

P(Dj2 > ¢j%) < =57
€

. . D2 a.s,
which is summable, so = — 0.

Finally, observe that the two conditions for Lemma 3.5 are satisfied. Since
the two conditions hold a.s., then the convergence result of the lemma is also
a.s.

O

Theorem 3.6. (Glivenko-Cantelli theorem)

Suppose {X;};>1 is an iid sequence. Define the empirical distribution function as

1 n
Gn ’ = - Ix, w)<lx R
(w,x) nz X, (w)<zs T €
Define F' as the distribution function of Xj, i.e.
Fz)=P(X; <z),z€R

Then |G, (w,z) — F(z)] =3 0 for any fixed » and

sup |Gn(w,z) — F(x)| 250
T€R

Remark. Note that the first (weaker) result is akin to pointwise convergence
of the distribution functions, and follows immediately from the strong law
because indicator functions have finite moments. The second result gives
uniform convergence of the distribution functions and is much stronger.

Lemma 3.7. (Deterministic)
Suppose {F}, },>1 and F' are distribution functions. If
1. For all x € Q, F,,(z) — F(x)
2. For all atoms z of F, F,,(z) — F(z) and F,,(z_) — F(z_)
Then supzer|Fn(x) — F(z)| — 0.
Proof. (Exercise)
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Lemma 3.8. Any probability measure p on R has only countably many atoms.

Proof. Let A be the set of atoms of . Consider any x € A. By the definition
of atom, F(x_) < F(zy), so we can pick a rational g, such that F(z_) <

qz < F($+)

Then, since p is non-decreasing, then for y # z € A we must have g, # g..
Otherwise one of the points is not an atom. Therefore the mapping from
A — Q is one-to-one and therefore |A| = |Q).

O

Proof. (of main result) Fix z € R and define:
A, ={X, <z} ={w: X,(w) <z}

This sequence {4,,} satisfies the conditions of Lemma 3.3, so we immediately
obtain the first result:

1 ¢ a.s
EZL‘i =Gp(w,z) — F(x)

To show the second result, we show that G,, and F' satisfy the two conditions
of Lemma 3.7.

1. First, note that if we redefine the sequence {4, } to be X,, strictly less than
X, then we immediately obtain

%Z 1a, = Gplw,z_) &5 F(z_)

Also, since we know G, (w,z) <% F(z) for all 2 € R, then it also holds for all
q € Q. Therefore if we define

B, ={w:Gy(w,q) = F(q)}

then P(B,) = 1.

2. Now let A denote the set of all atoms of F'. For any z € A, x € R also and
we have already shown that G, (w,z) “% F(z) and G, (w,r_) <% F(x_) for
all x € R. Therefore if we define

Cr ={w:Gp(w,x) = F(z), Gp(w,x_) = F(z_)}
then P(C,) = 1.

Now note, by definition of B, and C; above,

{w :sup |Gp(w,x) — F(z)] = 0} D ﬂ B, N ﬂ C,
z€R qeR zeA

The result follows by observing that {4,},>1 and P(A,) = 1 Vn, then

P(N>*A4,) =1.
O
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3.2

27 moment results

Theorem 3.9. (Kolmogorov’s maximal inequality)

Let {X;} be a sequence of independent r.v.’s with EX; = 0 and E(X?) < oo Vi.

Define .
Sy = in and S; = max [Sk|
Then (52)
" E
]P)(Sn 2 I) < 1'2n

Remark. Note the similarity to the Chebyshev’s inequality bound on S,,:

E(Sy)
IEJJ(|Sn| > x) < 2

Proof. Fix k. Define the random variable
A ={|Si| <z and |Sk| >z for 1 <i<k—1}

In other words, Ay is the event that the first crossing of partial sums over
x occurs at the k' step. Observe that the Ay’s are disjoint and also that:
{S; > $} = UZ:1AIC~

Furthermore, note that the joint event (A, Sk) is independent of the event
S, — Sk = ZZ 41 X since the former deals only with partial sums up to k
while the latter deals with sums of X;’s from k + 1 onwards, and the X;’s are
independent.

E(S?%) = / SZ dp
U

g:lAk
=> [ S2dp
k=1 Ak
:Z/ (Sn—Sk-i-Sk)zd]P’
k=17 A%k
_ Z/ (S — k)2 + 52 + 254(S, — Sy) AP
k=17 Ak
_ Z/ (Sn—S)2dP+Y " [ stap
k=17 Ak k=17 Ak
+ > 2E[Sk(Sn — Si)1a,]
k=1
>3 [ SRAP+ 2E[Sk(Sn — Sk)la,]
k=1" A%k k=1
=> / S2dP  (by independence of Sk, (S, — Si))
k=17 Ak
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Note that, by definition of Ak, Si > x in the the last step, so the integrand is
bounded below by 22 and we have:

AIED S FE LI 9 N
k=1 k=1
By disjointness and definition of the A;’s, we then have

E(S?) > 22 -P(UP_,Ay) = 22 -P(S; > )

Theorem 3.10. (Cauchy criterion)

A series Y | a, in a complete metric space M converges iff for every € > 0 there
exists IV € N such that for any n > k > N,

n
‘ Z (Zj‘ <€
j=k
Or, equivalently, that

sup‘Zaj‘ as k — oo
n>k

Proof. The Cauchy criterion is equivalent to the condition that the sequence
of partial sums S, is a Cauchy sequence. Since M is complete, then S,
converges. Since an infinite series converges iff the sequence of partial sums

converges, then the result is shown.
O

Theorem 3.11. ("Random series theorem”)

Let {X;}i>1 be independent with E(X;) = 0 and E(X?) = 07 < oo for all i. Suppose
that > ;- 07 < co. Then ) =, X;(w) converges a.s.

Proof. We want to show that the Cauchy criterion is satisfied. Chebyshev’s
inequality allows us to control the size of the partial sum for given k, but that
is not enough to satisfy the criterion. Instead, we must use Kolmogorov’s
maximal inequality to control the size of any given sub-series in the tail.

Define My(w) = sup,>; | > 7, X;j(w)|. By the Cauchy criterion, it will be
sufficient to show that Mjy(w) — 0 a.s.

Fix e > 0 and N > k. Note that, by Kolmogorov’s maximal inequality (for
the series starting from index k),

n 2
(o
su X;i( ‘ —<
<k<n£’N > ) 23
Letting NV — oo, and using continuity of P, we have
n 0 2
P <Sup \ le(w)‘ > e> —P(Myw) > <> X
nzk ik imk ©



Now we send k — oo to obtain the limit of M}, on the left side:

lim P(Mg(w) >€) =0

k— o0

where the RHS — 0 as k — oo since Y 07 < oo and o7 > 0 for all 4, so the
series is convergent.

So we have shown M} (w) L, 0. We now show that M, (w) &% 0 as well. Fix
k > 1 and define

Wi(w) = sup
k<ni<na

> Xifw)|
i=TL1
By the triangle inequality, we have M < Wy < 2Mj.

Now note that Wy, is decreasing (a.s.) in k. So let Wi, = limy_,o Wi. Since
Wy < 2Mj, and My i) 0, then Wy, L 0 also. Since W), =% W, then also
Wi LN Ws. But we just showed that Wy BN 0, so Wy = 0.

Finally, note that since M < Wy, then Mj, 2% 0 as well.

Theorem 3.12. (Kolmogorov 3-series theorem)
Let {X,}n>1 be an independent sequence of R-valued r.v.’s with E|X,,| < oo and
E(X?2) < oo. Define, for some A > 0:
Yo = Xn - L(ix,1<a)

Then )7, X,, converges a.s. if and only if:

1L > P(X,|>A4) <

2. > | E(Y,) converges

3. 30 Var(Y,) < oo

Remark. The conditions for 1) and 3) only require the series to be bounded,
but since the terms of those series are non-negative, then it is equivalent to
requiring the series to be convergent.

Proof. Define X! =Y, —EY,,. Thus EX], =0 and Var(X},) = Var(Y,,).

Note that the sequence of r.v.’s {X],} satisfies the requirements of the ”"Ran-
dom series theorem.” Therefore Y~ X, = > > (Y, — EY,) converges a.s.
Therefore, since Y.~ EY, converges by assumption, the difference of the
series Y > | 'Y, must converge a.s. also.

Note P(X,, #Y,) = P(|X,| > A). By assumption, Y - P(|X,]| > A4) < oo
so that by Borel-Cantelli, P(X,, # Y, i.0.) = 0.

36



Equivalently, this means that P(X, = Y, eventually) = 1. So for a.e. w,
there exists N(w) such that for n > N(w), X, (w) = Y, (w). Therefore,

SR
n=N (w) n=N(w)

And since Y, converges a.s. as shown above, its tail converges a.s. Thus
the tail of Y X,, converges a.s., so that the entire series converges a.s.
O

3.3 Strong law of large numbers

We begin by proving the important Kronecker’s lemma and give some motivation
for the proof.

Lemma 3.13. (Cesaro’s lemma)

Let {a,} be a sequence of strictly positive real numbers with a,, T co. Let {X,,} be
a convergent sequence of real numbers. Then:

Zakfak 1) X — lim X,

Proof. Let € > 0. Since X, is convergent, we can choose N such that
X >1limX, — e whenever k > N

Then split the sum into the portion up to N and the portion beyond N, and
apply the above inequality:

e L
lim inf Zl (a1 = ax—1) X
(075

N
. 1 —ap ..
2hm1nf{X E (akak—l)XkJrXN(thne)}

n—oo

N
. —aN ..
> — P _
> hnrggf{ kg_l ar — ap—1)Xx —|— o (lim X, 6)}
>0+4+1lmX, —€

Where the last step follows from the fact that a,, T co and ay is finite.

This is true for all € > 0, so liminf > lim X,,. To show that limsup < lim X,
follow the same argument except choose N such that X < lim X,,+¢ whenever
k> N.

O

Lemma 3.14. (Kronecker’s lemma)

Let {Y,,}n>1 be a real-valued sequence and let {a,},>1 be a sequence of strictly
positive real numbers with a,, 1 co. If >V, /a,, < oo, then S, /a, — 0.
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Proof. Define X,, = Z?:l Y, /a,. By assumption, X, converges so lim X,
exists. Note X — Xj_1 = Yi/ay so that:

Sn = Zak(Xk - Xp-1)
k=1

= aan - Z(an - anfl)kal
k=1

Divide by a,, send n — oo, and apply Cesaro’s lemma.

O
Theorem 3.15. (Kolmogorov criterion)
Suppose {X,, },>1 is a sequence of independent r.v.’s with EX,, = 0 and Var(X,,) =
EX?2 < oo.
If, for some 0 < a,, 1 00, Y. E(X2)/a? < oo, then S, /a, £ 0.
Proof. Consider the sequence of random variables Y,, = X, /a,. Note that

EY,, = 0 and Var(Y,) = EX2/a2. By independence, Var(Y,,) < oo.

By the "random series theorem”, then > Y, (w) = > X, (w)/a, converges a.s.
and thus, by Kronecker’s lemma, S,,/a, — 0 a.s.
O

Example. (Rates of convergence)

Another way of interpreting the result that S, /a, — 0 is that our choice of a,
grows faster than S,. To illustrate how this can be used, consider the following
setup:

Let {X,,}n>1 be iid with E(X2) < oo and EX; = 0. Let a2 = n(logn)'*<, € > 0.

Then note:
— E(X2) .- 1
R S LT — - <
Z n(logn)l+e CZ n(logn)lte >
And therefore by the Kolmogorov criterion,
S _ S 250
an  /nlogn(logn)</2
To compare, the CLT gives us that limsup S, /v/n = oo a.s. and the law of the

interated logarithm gives us the most optimal bound limsup S, /v/2nloglogn <% 1.
So our choice of a,, grows slightly faster than optimally, but not by much.

Theorem 3.16. (Strong law of large numbers)
Suppose {X;};>1 are iid with E|X;| < oo with EX; = . Then S, /n L5 .

Proof. We use truncation to obtain a sequence of r.v.’s with finite 24 moment.
We then show a.s. convergence of the sequence of partial sums of that series
by Kolmogorov’s criterion, and then use dominated convergence to to show
convergence of the original sequence.
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Step 1: show that truncating is OK

Let Yy = X}, - 1(|x,|<k)- Note E(Y;?) < k? < oo so that we can apply our 214
moment results to this sequence. Observe that:

S OB £ X,) = Y B(X 2 )
k=1 k=1

=Y P(|X1| > k)
k=1
S/ P(|X1| > J?) dz

0
= E‘X1| < o0

Therefore, by Borel-Cantelli, we have P(Y), # X i.0.) = 0. So for a.e. w,
there exists N(w) s.t. Vk > N(w), Xi(w) = Yi(w). Thus the tail behavior is
identical after a certain point, so it will be sufficient to show that

1 Z” as
— Y, — M
n

Step 2: show 2 3" (Y}, — EY;) “% 0

Let X} =Y), — EY}. Note EX} = 0 and Var(X?) = Var(¥}) < occ.
k k

By the Kolmogorov criterion, to show + Z X, 250, it will be sufficient to
show that Y. E(X/?)/n? < .

Note that E(X/?) < E(Y,?). Also note the following identity for a non-negative
random variable X:

E(XP) :p/ P P(X > 2)de
0
Applying this to the random variable |Y;,| with p = 2, we have:

E(Y?) = 2/ z-P(|Yy] > 2)dz
0

= 2/ z - P(|Xg| > ) - Lip<p) dz
0

Thus we have:
P =
n=1

n=1

oo X IPX> Tip<n
/Zw |k| z) - (S)dx

P(|X1| > z) - G(z) dx

I
S— 3

where G(z) = 2z Z w<n
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We show that G(z) is upper bounded so that we can pull it outside of the
integral. Then we will have shown that the LHS sum is < a constant times
E| X, which is finite by assumption.

We show that G(z) is upper bounded by 4. First, suppose that < 1. Then:
=1 2
Glr)<2 — =2 —
(1)<2) —5=2-5
Therefore for general x, we have that
— 1
>

G(z) <2z
n=[z]

Next, using the identity 5 < [

1 y—lz dy, we have
<1

Gla) < 290/ Ly

[c1-1 Y
1 oo

]
)

2x <4

[z] =17
Thus the > E(X/?)/n? < 0o, so + 3" (Y, — EY},) converges to 0 a.s.

Step 3: show 1 >""EY; “%0
At this stage we have that 1 Y" (v}, — EY},) =% 0.

If we can show that % S"EY 25 4, then it will imply that %L D
as well.

To see this, note simply that
EYy = E(Xk - 1jx,|<k)
= E(X1 - Tix,)<k)
D—C> EX, ask— oo

Thus since EY;, <% p, then L Y""EY;, =% p also.
O

Corollary 3.17. Suppose X7, Xo, ... are iid with IElX,i+ = oo and EX; < co. Then
% Zn Xk 2) Q.

P’/‘OOf, Fix B > 0. Let Y, = X} - ILX;VSB‘
Note that the {Y}},>1 are also iid with

E|Vi| = E(X{ Lyt o) + EXT < o0
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EY: :I[-E(Xfr . ]lX;fSB) -EX; <
By the strong law,
1O N _
523@ =% E(X{ - 1xrep) —EX;
And since Y, < X}, for all k, then
liminfliXk >1imliYk =E(X{ 1yi_p) —EX;
n = n 1 ixf<B 1

This is true for any B. So sending B — 0o, by monotone convergence we can
see that the RHS diverges to infinity. Thus the limit of % S Xy = oo.
O
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4 Martingales

4.1 Conditional expectation

Definition. (Conditional expectation)

Let (Q2, F,P) be a probability space and let X : @ — R be a random variable with
E|X| < 0.

Let G C F be a sub-o-field of F (e.g. G = o(Y") for some random variable Y defined
on the same probability space).

Then there exists a random variable Z called the conditional expectation of X
given G, written E(X | G), with the following two properties:

1. Z is G-measurable.

2. For any set A € G,

/ XdP = / Z dP
A A
Proof. (of existence)

Consider the probability space (2,G,P). Since P is defined on F and G C F,
then its restriction is a measure on G.

First suppose that X > 0. Define the function v(A) = [, XdP, A€ G. Tt
is easily checked that v is a measure on G such that v < P. Then by the
Radon-Nikodym theorem, there exists an a.e. unique G-measurable function
Z :(2,G,P) = R such that

mm:AzszXW

Furthermore, Z is integrable since E|X| < oo.

For the case of X not necessarily > 0, write X = XT — X~ and let Z; =
E(X*|G) and Zo = E(X™|G). Then Z; — Z, is integrable and:

/XdP:/X+dP—/X_dP
A A A
=/Z1dP—/Z2dP
A A

= /A(z1 — Z5)dP

O

Note that the a.e. uniqueness of the CE follows immediately from Radon-Nikodym.
But proving it explicitly is easy:
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Proof. Assume there exists Z, Z’ such that, for A € G,

/Xd]P):/ZldIP:/ZQd]P)
A A A

Fix e > 0 and let £ = {Z; — Z5 > €}. Then
o:/X—XdP:/Z—Z’dpze-P(E)
B E

So Z > 7' a.e. Flip Z,Z’ to show the opposite direction.
O

Remark. Note that we cannot conclude that Z7 = X from the fact that
J,ZdP = [, X dP, since X may not be G-measurable.

Theorem 4.1. The second condition in the definition of CE is equivalent to the
following conditions:

1. Let D be a m-class with G = (D). Then fAXdIP> = fA ZdP for all A € D.
2. For any bounded G-measurable r.v. V, E(XV) =E(ZV).

Proof. For the first, define L={AeG: [, XdP— [, ZdP}. Show that L is
a A-class.

For the second, note that the condition obviously holds for V' = 14. Thus
it must hold for simple functions, and, by monotone convergence, for general
measurable functions.

Example. (Full information)

If G = F, then E(X |G) = X. To see this, note that X always satisfies condition
(2) so the only thing keeping X from equalling E(X |G) is condition (1), which is
satisfied.

Intuitively, if we know exactly what happened in €2, then our best guess of the value
of X(w) is X (w) itself.

Example. (No information)

If G = {0,Q}, then E(X |G) = EX. To see this, note that G is independent of X.
Therefore:

/XdIP:E(X]lA) —EX-El, =EX
A
since A =0 or A = Q.

Intuitively, if we don’t know anything about what happened in 2, then our best
guess of the value of X (w) is simply the unconditional expected value.

Example. (Partition information)

Let {B;}n>1 be a measurable partition of Q. Let G = ¢(B, Ba,...). Then

Jp, XdP  E(X;B))
P(B;))  P(B)

E(X|G) = on B,
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Where E(X; B;) is the expected value of X restricted to B;:
E(X;B;) = / XdP
B;

To see this, note that the RHS is constant on each B;, so it is measurable w.r.t. G
and condition (1) is satisfied. To show condition (2), note that the set {@), By, Ba, ...}
generates G and also is a 7-class since the B;’s constitute a partition. Therefore we
only need to check equality for a given B; by the generating m-class property:

E(X;B) . E(X;B) e
/BL BB TR /B dPE(X’B”/BiXdP

Intuitively, the information in B; tells us which element of the partition our outcome
lies in, and, given this information, our best guess for X is the average value of X
over that partition.

Note that the example of no information is a special case of this example.

Theorem 4.2. (Bayes’ formula)
Define P(A|B) =P(AN B)/P(B) and P(A|G) =E(14]G).

Let G € G. Then
fG]P’(A|Q) dP

P(G|A):7fQP(A|g)dIP

Proof. Note that:
/ P(A|G)dP = / IE(]lA|g)dIP’:/ 14 dP = P(ANG)
G G G
And by a similar argument,
/ P(A|G)dP =P(A)
G

Therefore we have:

JuP(A|G)dP  P(ANG)

[oP(AlG) AP P(4) P@l4)
O
Theorem 4.3. (Two basic properties)
1. If V' is G-measurable, then E(V |G) = V.
2. EX+Y|G)=EX|G)+EY|G)
Proof. Trivial.
O

Theorem 4.4. Let V be G-measurable with E|[VX| < co. Then
E(VX|G) =V -E(X|G)
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Proof. We show the result for indicator functions: V = 1z, B € G. Then the
result will hold for simple and general measurable functions by MCT.

First note that, since V is G-measurable and E(X | G) is G-measurable, then
V -E(X |G) is G-measurable as well.

Next note that, for A € G,
/VXd]P’:/V-]E(X|Q)d]P
A A
/ILB-XdIP’:/ILB-IE(X|g)dIP’
A A
XdIP’:/ E(X|G)dP
ANB

ANB

And the result follows from the fact that AN B € G.
O

Remark. Important: note that the assumption E|V X| < co is necessary so
that the CE is well-defined.

Theorem 4.5. Let X,Y be r.v.’s with X <Y as. and E|X| < o0, E|Y] < 0.
Then:
E(X|G) <E(Y|G) a.s.

Proof. Fix e > 0. Let A={E(X |G) —E(Y |G) > €}. Note A is G-measurable
SO we can write:

/A]E(X|Q)d]P’:/AXdIP>§/AYdP:/AIE(Y|g)d]P’

Where the center inequality follows because X <Y a.s., which shows that A
must have measure zero. This is true for any € > 0,s0 E(X |G) < E(Y |G) a.s.
O

Theorem 4.6. Let X,, > 0 be a sequence of r.v.’s with X, 1 X and E|X| < oc.
Then
E(X, |9) TE(X|G)

Remark. If we consider X,, = Y7 — Y, for random variables Y,, with Y,, | Y
and E|Y7|,E|Y| < oo, then using linearity we can obtain the corresponding
result E(Y,, |G) L E(Y | G).

Also, compare this to the similar-looking result given by the Levy zero-one
law (convergence theorems).

Proof. Let A € G. Define Z, = E(X,,|G). Note that Z, is measurable so
that Z,, is also measurable. Also note that Z,, 1, so that by MCT we have:

L [y ZndP = [ Z,14dP 1 [ Zoo14dP
2. [y ZndP= [X,14dP 1 [ XooladP
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Theorem 4.7. Let X be independent of G. Then E(X |G) = EX.

Lemma 4.8. Let X be independent of G and let g : R — R be such that E|g(X)| <
00. Let Y be a r.v. which is G-measurable with E|Y| < oo and E|g(X) - Y| < cc.
Then

E(g(X) ) = Bg(X) -EY

Proof. RESOLVE THE BELOW QUESTIONS FIRST:

QUESTION 1: If X is independent of G and Y is G-measurable, then that
implies that X is independent of Y, right?

QUESTION 2: In the above lemma, the requirement on g is that E|g(X)| <
oo. Is this equivalent to saying that g is a bounded measurable function? If
not, then why did we require that functions be bounded and measurable in
the previous section on independence?

Theorem 4.9. Let X : Q@ — S; and Y : Q — S by independent. Also let
¢ :S1 x S3 — R be such that E|¢(X,Y)| < co. Then,

E(¢(X,Y) ] X) = g(X)
where g is defined by g(z) = E(¢(z,Y)).
Proof. READ UP ON PRODUCT SPACES FIRST

Theorem 4.10. (Tower property)
Let G C ‘H be sub-o-fields of F. Then,

E[E(X |H)|G| =E(X|9)
Remark. The undergraduate analogue to this property is:
E[E(X |(Y,2))|Y| = E(X|Y)
Additionally, if G = {0, Q}, then G C H obviously and:
E[E(X |#)|G] = E(X|{0,9}) = EX
Proof. G-measurability is obvious. Let A € G. We want to show:
/AE(X|’H)d]P’:/A]E(X|Q)d]P’

This follows from the definition of conditional expectation and the fact that
if A€ G, then A € H. Thus:

/AIE(X|7-L)dIP’:/AXdIP’:/AE(X|g)dIP’
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Corollary 4.11. Keeping G C H, we also have:
E[E(X|9)|H| =E(X Q)

Proof. E(X |G) is H-measurable since E(X |G) is G-measurable and G C H.
O

Theorem 4.12. (Two important inequalities)
L [EX|9) <E(X]9)

2. Let I be an open set in R and let ¢ : I — R be convex. Let X be a random
variable that only takes values in I and such that E(¢(X)) < co. Then:

$[E(X]G)] <E(¢(X)|G)

Proof. To prove the first, note that —|X| < X < |X|. Take conditional
expectations.

The proof of the second is exactly analogous to the proof of the unconditional
Jensen’s inequality.
O

4.2 [? interpretation of conditional expectation

Let (92, F,P) be a probability space. Define L?(Q, F,P) = {Y : EY? < oco}. It is
easily checked that this is a Hilbert space with the inner product

(X, Y) =E(XY)

The corresponding space generated by the sub-o-field G, L?(,G,P) is a closed
linear subspace of L?(€2, F,P). Furthermore, if X € L?(Q,F,P), then E(X |G) is
the projection of X onto L?(Q,G,P).

This suggests two interesting facts:
Theorem 4.13. (E(X |G), X —E(X |G)) =0
Proof. Let Z = E(X | G). Note that IE[E(Z(X ~7)] g)] = E(Z(X - Z)).

We show that E(Z(X — Z)|G) = 0 so that the entire LHS expectation is 0.
Since Z is G-measurable, then:

EZ(X-2)|6)=2Z-E(X-2Z|G)
=7 [E(X|6) - E(Z|9)|
—Z. {E(X|g)—Z}
=0
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Theorem 4.14. E(X |G) = argmin{E(X — V)? : V is G-measurable}
Proof. Let Z =E(X |G). Note that
E(X - V) =E[(X-Z+Z-V)
—E(X - 2 +E(Z - V)? - 2E[(X - 2)(Z - V)

If we can show that the cross term is zero, then:

EX-V)?=EX-2)?+EZ-V))>EX - 2)?
Note that:

E[(X —2)(Z - V)} - E[Z(X - Z)} - E[V(X - Z)}

By the previous theorem, the first term in the RHS is zero. For the second
term,

E[V(X — Z)} = IE[E(V(X —Z)| Q)}

IE[V E(X - Z| Q)} V' is G-measurable

Noting that E(X — Z|G) = E(X |G) — E(Z]|G) and observing that Z is G-
measurable shows that this term is zero.

O

Definition. (Conditional variance)

The conditional variance of X given G is

Var(X [G) = E([X ~E(X|9)]°| Q)
Theorem 4.15. Var(X) = E [Var(x | g)} + E[(E(X 1G) - EX)Q}
Proof.
2 2
IE(X —EX) - ]E(X CE(X|G) +E(X|G) —IEX)

O

4.3 Martingale basics

Definition. (adapted random variables)

Let (2, F,P) be a probability space and let G C F be a sub-o-field. Then we say
a random variable X is adapted to G if X is measurable w.r.t. G.
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Definition. (Martingale)
Fix a filtration of {F,},>1. Let {X,,},>1 be a sequence of r.v.’s.
{X,} is a martingale with respect to {F,} if:
1. E[X,| < 00 Vn
2. X, is adapated to F,, (i.e. Fp, Co(X1,...,X,))
3. E(Xpy1| Fn) = X, as. Vn
If E(X,41|Fn) > X, as. Vn, then {X,,} is a submartingale
I E(X,41|Fn) < X, as. Vn, then {X,,} is a supermartingale
Example. Suppose &1, &, ... are indepedent. Let F,, = 0(&1,...,&,). Define
Xp=&+...+&
Assum E|¢;| < oo for all ¢ > 1. When is this a martingale?
1. E|X,| < oo by the triangle inequality.
2. X,, is adapted to F;, (Y is a deterministic function of &1, ...,&,)

3. To check the last martingale condition, note that:
E(Xns1 | Fo) =E( + ... 4 &nv1 | Fan)
= i]E(Ez | Fn) + E(&nv1 | Fn)
= Zn: & +E(&nt1)
= Xn + E(§nt1)

Therefore if E(§;) = 0 for all 4, then {X,,},>1 is a martingale. If E(;) > 0,
then it is a submartingale. If E(;) < 0, then it is a supermartingale.

Example. Let {¢},>1 be independent with E§; = 0 and E(§;)? = 02 < oo Vi. Let
{Fn}n>1 be a filtration given by F,, = o(&1,...,&,). Define

anngzn:af and X, :Zn:@-

Then {Qn}n>1 is a martingale.
1. E|Qn] =0 < oo for all n > 1.
2. @, is F,-measurable.

3. We want to show that E(Qn41 | Frn) = Qn
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Note that:
E(X241 1 Fa) = E((Xn + En41)? | F)
= E(X2 4+ +2Xnbns1 | )
= X; +E(Er 1) + 2X0E(Ent1)
= Xn+ o

Therefore we have:
n+1

E(Qni1| Fo) =E(Xp 1y =) 0f | Fa)
n+1
=Xy +on _Z‘T?
=X2+ Z o?
= Qn

Remark. If the &;’s are iid with mean zero and variance 1, then:

n 2
(Z £1> -n is a martingale

n>1
Theorem 4.16. (Two martingale inequalities)
In both inequalities, assume the martingales are w.r.t some filtration {F, },>1.

1. Suppose {X,},>1 is a martingale and let ¢ be convex. If E|¢(X,,)| < oo for
all n, then {¢(X,,)}n>1 is a submartingale.

2. Suppose {X,}n>1 is a submartingale and let ¢ be convex and increasing.
Then {¢(X,,)}n>1 is a submartingale.

Proof. The proof for both parts is by conditional Jensen.
L E[9(Xnt1) | Fa| 2 0[E(Xut1 | Fa)] = 6(Xa)

2. E[¢(Xn+1) \fn} > Qs{E(Xn—H ‘]:n)} > ¢(Xn)

Example. (A multiplicative martingale)

Suppose {&;}i>1 are independent with E¢; = 1 for all 4. Let the filtration be given
by Fn, =0(&1,...,&)-

M, =[]"¢&; is a martingale w.r.t. {F,}.
Showing the first two conditions is obvious. To show the third, note that:
E(Mn-H |]:n) = E(Mn “Ent1 ‘]:n)
= My - E(§nv1 | Fn)

=M, - E(£n+l)
- M,
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Example. Fixt € R. Let {X;};>1 be independent and let ¢;(t) = E(e?X?). Define:

o, (3" X))
[1" ¢i(t)
M, is a martingale.

To see this, we just need to show that {M,},>1 satisfies the conditions of the
previous example. In this case,

exp(t&;)
¢i(t)
Example. (Likelihood ratio martingale)

Let &1,&s,. .. be iid and fix a filtration F,, = (&1, ...,&,). Also let f, g be densities
and let the likelihood ratio be given by:

& =

Ln(glv cee 7£n) =

1. Case 1: & has density f

{Lp}n>1 is a martingale. It is easily checked that L, is F,,-measurable and
has finite expected value (the joint density factors by independence). To check

the last condition, note:
E(Lpt1 | o) =E (H fﬂ@) . %3 | fn]

1y 9(&) o [ 9(En+1)
_ H Jg‘((?)) -1 (&,41 has density f)

Il
~

2. Case 2: ¢; has density g
If E|L,| < oo, then {Ly,,}»>1 is a submartingale.

To see this, note that {1/L,},>1 is a martingale and the function ¢(L,,) =
1/L,, is convex.

Definition. (Alternate definition of martingale)

Let {F,}n>0 be a filtration and let {X,,},>0 be a sequence of random variables.
Define:
An:Xn_anh n>1

{X,} is a martingale with respect to {F,} if:
1. E|Xo| < 0o and E|A,| < 00, Vn > 1.

2. Xg is Fo-measurable and A,, is F,-measurable Vn > 1.
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3. E(A, | Fno1) =0as. Vn
If E(A, | Fn-1) >0 a.s. Vn, then {X,} is a submartingale
If E(A, | Fro1) <0 a.s. Vn, then {X,} is a supermartingale
Definition. (Predictable process)

{H,}n>1 is a predictable process with respect to filtration {F,},>¢ if, for
alln > 1, H, is F,_1-measurable.

Example. Let H, be the amount of stock bought on day n — 1 at price z,_1, and
sold on day n at price z,,. The amount of total profit or loss from this action is
Hn(-rn - xn—l)-

Remark. Note that, for a process {X,}n>0, if we have Xy and Aq, Ay, ...
where A,, = X,, — X,,_1, then

Xn:X0+Zn:An

j=1
Lemma 4.17. (Doob decomposition)

Let {X,, }n>0 be a sequence of r.v.’s adapted to filtration {F, },,>0 with E|X,,| < co
for all n > 0. Let AX = X,, — X,,_1.

Define {Y, }n>0 by:
Yo =Xy, AY =AY -—E(AY|F,_1)

3

Define {Z,,},,>0 by:
Zo=0, AZ=FE(AX|F..1)

Then the following hold:
1. X, =Y, +2,
2. {Y,}n>1 is a martingale.
3. {Z,}n>1 is a predictable process.

Proof. Z, is F,_1-measurable by defintion of conditional expectation Vn, and
therefore is a predictable process.
O

4.4 Discrete stochastic integral

Lemma 4.18. Recall that, if {F,},>0 is a filtration, then:
Foo =0 (UpZoFn)

If T is a stopping time, then {T = 0o} € Fo.
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Proof. {T = oo} = NS2o{T > n}. Note that {T' > n} = {T < n}° e F, for
each n. Since F, is the o-field generated by the union of these F,,’s, then it

is closed under countable intersection. Thus {T' = oo} € Fi.
O

Definition. (o-field up to time T)
Suppose T is a stopping time. The o-field up to time T is:
Fr={Ae€F:ANn{T =n} e F,, n>0}
Proof. We show the three conditions to be a o-field are met:
1. Q € Fr: obvious.
2. Closed under complements: A°N{T =n} ={T =n}\[AN{T =n}|
3. Closed under countable union: U®A; N {T =n} = U®[A4; N{T = n}]

Corollary 4.19. Note that the o-field up to time T can also be characterized by:
Fr={AeFe: AN{T <n} e F,, n>0}

Proof. Note that the requirement that {T' = n} € F,, for a stopping time T'
is equivalent to the requirement that {T < n} € F,.

Theorem 4.20. (Stopping time fact, part 1)

Let T be a stopping time and let {X,,},>0 be a sequence of r.v.’s adapted to a
filtration {F, }n>0. Define:

v — Xr T <o
)0 ifT=00
Then Y is Fp-measurable.

Proof. Fix B € B(R). We need to check that {Y € B} € Fp. Naturally we
split the problem into two cases:

1. T < oc:

Note that the condition {Y € B} € Fr is equivalent to the condition that

{Y e B}n{T'=n} e F, for all n > 0. Then note that
{YeBIn{I'=n}={X,€B}n{T =n}

and that {X,,},>0 is adapted to the filtration {F,,},>0, so that {X,, € B} €

Fun, and that T is a stopping time.
2. T =o0:

Note that the condition {Y € B} € Fr is equivalent to the condition that

{YeB}In{T =} € Fs.

Since Y = 0, then {Y € B} is either Q or ) for any B € B(R), which is

automatically in F. Also, by our lemma above, {T' = 0o} € F.
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Theorem 4.21. (Stopping time fact, part 2)

Suppose S and T are stopping times with respect to the same filtration and with
S <T. Then Fs C Fr.

Proof. Let A € Fs. We show that A € Fr also.
By the definition of o-field up to time S, we have
An{S<n}eF, foralln>0
Then since S < T, we have:
An{T <n}=An{S<n}n{T <n}

Noting {T' < n} € F, completes the proof.

Theorem 4.22. (Stopping time fact, part 3)

Suppose S and T are stopping times with respect to the same filtration. Then
{S=T} e FsnN Fr.

Proof. Recall that if S and T are stopping times, then min(S,T) is also a
stopping time. Furthermore, by the definition of o-field after time min(S,T),

Fmin(s,1) = {A € Foo : AN {min(S,T) < n} € Fp, n >0}
=FsNFr
Now note that: {S =T} = ;’LOZO{{S =n}N{T = n}}

Clearly, {S =n}N{T =n} € Fs N Fr for fixed n. But since the intersection
of two o-fields is again a o-field, then FgNFr is closed under countable union,
so that

(S=T) = ;?:O{{szn}m{Tzn}} € Fs N Fr

Definition. (Process stopped at time n)

Let T be a stopping time and let {X,,},>0 be a sequence of r.v.’s adapted to a
filtration {F, }n>0. Define T' A n = min(T, n) for some fixed n.

We call the sequence of r.v.’s {X7a, : n > 0} a process stopped at time n.
Example. Let {X,,} be as above with T' = inf{n > 0: X,, > 30}.

{XrAn}tn>0 will evolve as {X,,} until n reaches T' = £, the first time at which X,
goes above 30. Then {Xra,} will take the value X;, (i.e. the value {X,} takes
when it goes above 30 for the first time) for the rest of its lifetime.

Definition. (Discrete stochastic integral)

Let {F,,}n>0 be a filtration, let {X,},>0 be a process adapted to that filtration,
and let {H, },>1 be a predictable process.
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The sequence {Y;,},>0 defined by Yy = 0 and:

AY =Y, -Y,  =H,AX =H,(X,, — X,,_1)

Yo=Y+ Y AV =) Hj(X; - X;1)

j=1 j=1
is called the discrete stochastic integral, denoted Y = HX or Y,, = (HX),.

Theorem 4.23. (Martingale properties of discrete stochastic integrals)

1. If {X,,}n>0 is a martingale and {H,},>1 is bounded and predictable, then
{Y,,}n>1 is a martingale also.

2. If {X,}n>0 is a sub(super)martingale and {H,,},>1 is bounded, predictable
and non-negative, then {Y;,},>1 is a sub(super)martingale also.

Remark. If we interpret the predictable process {H,} as a betting strategy,
then the fact that {Y,,} must be a martingale tells us that we cannot come
up with a betting strategy that will ”consistently” make a net profit/loss so
long as {X,,} is a martingale.

Proof. Checking the first two conditions (in the alternate definition of a mar-
tingale) is trivial.

For the third condition, consider the case of a martingale:

E(AY | Foo1) = E(Ha(Xn — Xn-1) | Fa1)
= Hn ' E(Xn - Xn—l |fn—1)
=0

Where we can pull out H, since it is bounded, so that the expectation of
H, (X, —X,_1) is finite. The argument for a sub(super)martingale is exactly
analogous, except for the additional requirement that H,, > 0 so that the sign

of the expected value does not switch.
O

Theorem 4.24. Suppose {X,,},,>0 is a (sub)martingale and T is a stopping time.
Then {Xran}n>0 is also a (sub)martingale.

Proof. Let Hy, = 1p<7r. Thus is the strategy where, every day until day 7,
you buy 1 unit of stock and sell it immediately the next day.

Since {X,}n>0 is a (sub)martingale, then the discrete stochastic integral
{Y,,}n>0 defined by

ZZ:l Hy(Xp — Xp—1), n>1

Y,=(HX), =
0, n=>0

is a (sub)martingale if {Hj},>0 is predictable, bounded, and non-negative.
Clearly it is bounded and non-negative. To see that it is predictable, note
that {T >k} ={T <k—-1}° € Fr_1.
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Since Hj = ly<r, then Y, is a sum of Af fromk=0tok=nif T > n.
Similarly, Y,, is a sum of AkX from k=0to k=T if T < n. In other words,

v _ X X0, T>n
"\ Xr—Xo, T<n

But this is precisely the definition of X7, — Xo, and we already shown that
{Y,}n>0 is a (sub)martingale.
O

Proof. (Alternate)
This proof does not use the discrete stochastic integral. We show only the
conditional expectation property of a martingale:

E[X(nJrl)/\T | fn} =E {XT Ar<n + Xng1 - Irsn | Fa

= X7 lr<p + Lrsp - E(Xpg1 | F)
= XT : ]ITSn + Xn : ]1T>n

= AnAT
O]
4.5 Optional sampling theorems
We begin by noting two simple facts:
1. (Follows from tower property)
(a) If {X,}n>0 is a martingale, then EXy =EX; = .. ..
(b) If {X,,}n>0 is a submartingale, then EXy <EX; < ....
(c) If {X, }n>0 is a supermartingale, then EXy > EX; > .. ..
2. If {X,, } n>0 is a submartingale, then Z,, = —X,, = {Z,,},>0 is a supermartingale

Theorem 4.25. (Optional sampling theorem)

Let {X,,}n>0 be a submartingale and let T7, T be stopping times such that
1. T1 <T5 as.
2. Ty <00, Th < 00

Under certain conditions (x), then:
IE()(T2 ‘]:Tl) Z )(T1 and so IE)(T2 Z H‘E)(T1
and if {X,,},,>0 is a martingale, then equality holds:

E(Xp, | Fr,) = X1, andso EXp =EXq
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Theorem 4.26. ("Bounded” OST)
If Ty <T5 < tg where tg is a constant, then the OST holds.

Proof. Fix A € Fr,. It is sufficient to show:

/E(XTzlle)dPZ/XTIdP VAEJ:TI
A A

Our approach is to construct a martingale using a discrete stochastic integral
with an appropriate predictable process.

We find our predictable process by considering the stock-buying strategy of
buying 1 unit of stock at the end of day 77 and continuing to buy each day
up to day 75 if the event A happens:

Hy =14 17, cp<r,, k21

To see that { Hy }r>0 is predictable, write Hy, = 1 4n{1, <k—1} - I7,>% and note
that the first indicator function is Fj_i-measurable by the definition of Fr,
(since A € Fr,).

Then the discrete stochastic integral {Y},},>0 is given by Yy = 0 and:

Y, =Y Hp(Xp — Xp_1)
k=1

= (XTQ/\"Z - XTl/\n) : ]lA
Therefore since Hy, is bounded and non-negative and {X,, },,>¢ is a submartin-

gale, then {Y}, },,>0 is also a submartingale. Thus since EY, = 0, then we have
that for all n > 0,

EY, >0 and so E[(XTW — Xy pn)1a] >0

The proof is completed by taking n = t¢ and applying the definition of CE to
the LHS.
O

Example. (Counterexample: simple random walk)
To illustrate the importance of bounded stopping times in this theorem, consider
an iid sequence {§;};>1 such that

1 1

3 Plé=-1)=3

Let a filtration {F,} be given by F,, = o(&1,...&,) and define {5, }n>0 by:

P(& = +1)

So=1, Sp=1+Y &
i=1
{Sn}n>0 is obviously adapted to {F,}, ES, =1 < oo for all n, and:

n+1 n
E(Snt1|Fn) =1+E (Zfi |fn> =14+ & +E(nt1 | Fn)

i=1 =1
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so that it is a martingale. Now consider the stopping time 7' = inf{n > 1: S,, = 0}.
Note that P(T < oo) = 1 but there does not exist ¢y < oo such that P(T < tp) = 1.

Suppose we try to apply OST using 77 = 0 and 75 = T. Then we would have
ESt, = ESt,, but clearly ES7, = 0 and ES7, = 1.

Theorem 4.27. ("Unbounded” OST)
If 77 <7T, < 0o a.s. and, additionally,

kli_{r;QE(\XTi — XT,-/\k|) =0 fori=1,2
then the OST holds.

Proof. Fix k1,ke € {0,1,...} such that k; < ks. Consider the bounded ver-
sions of T7 and T» given by:

Ty Nk <k, ToNky <k
Applying the bounded OST with 77 A k1 and T A ko, we obtain:
E(X1unks | Frink:) = X1 Aky

To extend this result to the unbounded the case, we will take ks — oo first
and then ki — oo. To justify taking ks — 0o, we show L' convergence of
]E(XT2/\’€2 |]:T1/\k1) to ]E(XTz |‘7:T1/\k1):

E“E(XTz ‘]:Tl/\kl) - E<XT2/\}<?2 |]:T1/\k1)”
= E“E(XTE — X1y Aks |‘FT1/\/€1)|]

< E[E(|XT2 = X1y k| | FTyaky ):|

(Conditional Jensen)
= E(|XT2 - XTg/\ng — 0 as kg = o0
We show that this implies E(Xq, | Fryaky) = X1k, Fix some A € F (7)
and note that:

/ ’E(XT2Ak2 | Fronw) — E(Xr, | Froae) | dP = 0 as ks — oo

= / ‘IE(XTQNCQ | Frone) - 1a — E(Xz, | Fropm,) - ]1,4‘ dP — 0
- ‘/AE(XTQMZ | Frynw,) dP — /AE(XT2 | Fronks) dP| = 0
Now since E(X1,aky | Fryak,) = X1y Ak, , We also have that
/A E(X, 5, | Friney ) dP > /A Xrypy AP Vs

This is true for all ky and since [, E(X,ak, | Fryak, ) AP converges to [, E(Xr, | Fpyar, ) dP
as just shown, then the inequality must still hold for the limit:

/ E(XT2 “FTl/\k’l) dP Z / XTl/\kl dP for arbitrary A
A A
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Thus we have E(X7, | Fryak,) = X1, %, - Equivalently, we can write this as
E(Xt, | Fryak,) > X1y on {T1 < kq}

Send k1 — oo.
O

Note that it is not obvious how to check the condition im E(| X1, — X7,ax|) = 0.
The following lemma gives two sufficient conditions for that condition to hold:

Lemma 4.28. Let {X,,},>0 be a martingale and T be a stopping time such that
1. E(|Xg| - 17sk) — 0 as.
2. E(|X7]) < 0
Then limE(| X7 — Xrak|) = 0.
Proof.
E(| Xt — X7ak]) =E

E
<E

| X1 — Xrakl - Lr<k) + E(| X1 — Xoak| - Losk)
| X7 — X7ak] - Lrsk)

| X7| Lrsk) + E[Xg| - Irsg

by triangle inequality)

—~ o~ —~

The rightmost term — 0 by assumption, so what is left is to show that

Define Z = |Xr| - Iysg. Since P(T < oo) = 1, then Z, =% 0. Also,
|Z| < |X7| for all k. Thus since E(|Xr|) < co by assumption, we can apply
DCT and the result follows.

O

4.6 Maximal inequalities and upcrossing lemma

Definition. (Some notation)
For a sequence of random variables {X,, },,>0, we define:
].. X;{ = SupOSnSN Xn
2. X* =sup,>9 Xn
In these equalities we will make clearer the connection between sub(super)martingales

and increasing(decreasing) sequences. Note that, for a deterministic decreasing se-

quence {X, }n>0,
sup X,, = Xo
n>0

An analogous result holds for supermartingales:
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Theorem 4.29. (Supermartingale maximal inequality)

Let {X, }n>0 be a supermartingale such that X,, > 0 a.s. Then
A-P(X* >\ <EX,
Remark. Note the relation to Markov’s inequality applied to the first term:
A-P(Xo > )\) <EXp
Proof. Fix N > 0 and A > 0 and define T' = inf{n > 0: X,, > A}. Then:
(X3 = A} = {T <N}
The proof is by ”"bounded” OST.

Note that since T is a stopping time, then T'A N is a bounded stopping time.
Let Ty =0 < T, =T A N. Then by OST,

EXo > EX7an
=E(X7an - 1r<n) + E(X7aAn - 175 N)
> E(Xpan - Ip<n)  (since X,, > 0)
=E(X7 - 1r<n)
=E(Xr - 1xg>))
>A-P(Xy > A)
Thus we have the inequality for any given N. Now note that as N — oo, then

{X} > A} 1 A, some A. Now note that A C {X* > A}, so we do not have
equality. However,

{X* >N N}cAC{X*>)\}

So that we now have the inequality A - P(X* > X) < EXy. To complete the
proof, take a sequence \; T A and note that:

And let i — oo.

Theorem 4.30. (Doob’s submartingale maximal inequality)

Let {X,}n>0 is a submartingale with respect to a filtration {F,},>0. For any
N € Nand A > 0, then

APXy =N < E[XN : ﬂxgz,\}
<EX}%
Remark. Note the relation to Markov’s inequality applied to the N** term:

A P(XE >N <EXY
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Proof. Again, the proof is by "bounded” OST.
Define T'=inf{n > 0: X,, > A\}. Let T, = N and T} =T A N. Note:
1. ' <T, <N
2. {T <N} e Fp
Where (2) follows from {T'< N} N {T'A N <n} = {T < n}. Therefore,

/ E(Xrp, | Fry,)dP = / Xr, dP
{T<N} {T<N}
> / X, dP  (by OST)
{T<N}

Now using the fact that {T'< N} = {X} > A}, we have

/ XnydP > / Xpan dP
{Xx2A} {Xx2A}

/ Xy dP > / X dP
{X3 >0} (X322}

/XN LyxzzapdP 2 /XT'I{X;‘@A} dp

= /A LixgzapdP

Where the last step follows from the definition of T

O

Remark. Using the fact that P(X > t) < P(X? > ¢?) for any r.v. X and
t > 0, and the fact that S? is a submartingale if S,, is a martingale, this gives

Kolmogorov’s maximal inequality.

Theorem 4.31. (Doob’s L? maximal inequality)
Let {X,, }n>0 be a submartingale with E(X?2) < oo for all n.
For fixed N > 0,

B[ (max(X7,0))2] <4-E[(X})?]

Remark. If {Y,},>0 is a martingale, then {X,}, >0 defined by X,, = |Y,,| is a

positive submartingale and we have:

2 2
E[(max, [Ya)?] <4-E()
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Proof.

E[(max(X}’{,,O))Q] - 2/000 A-P(X5 > A)dA

IN

2/ E[Xn - Txg2a] dA
0
(by sub-MG max’l inequality)

Q/OOE[X;JXM] d
0

2/ /XIT,~]IX;VZ,\de>\
/X+/ Ixz>adAdP

(by Fubini)

IN

—2/X -max(Xy,0)dP
- 21E{X; -max(XN70)]

Apply Cauchy-Schwarz and rearrange.
O

We now introduce some motivation for the main result of this section-the upcrossing
lemma. Consider the following two sequences. How many times do they ”upcross”
a given threshold?

1. Xp=1/n

Crosses only once for any threshold. Key observation: if a sequence converges,
then the number of upcrossings will always be finite.

2. Xo, =1/2n and Xopy1 =14+1/2n

This sequence has two subsequences that converge to different limits. There
exist thresholds (e.g. 1) where the number of upcrossings is infinite.

Definition. (Setting for upcrossing lemma)
1. Let {X,}n>0 be a sequence of random variables.
2. Fix some a < b. Define a sequence of stopping times by:
S1=inf{n >0: X, <a}
=inf{n >0: X, > b}
Sy =inf{n > T : X,, < a}
T> = inf{n > S : X,, > b}
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3. Define the number of upcrossings of [a, b] up until time n by:
Uypla,b] = max{i: T; < n}
Theorem 4.32. (Upcrossing lemma)
Suppose that {X,, },>0 is a submartingale. Then

E[(Xy —a)*] — E[(Xo — a)"]
b—a

E[Un[a, b]} <
< EX + |a]

- b—-a
Proof. Note that U(a,b) for a general subMG {X,, },,>0 is equal to U(0,b—a)

for the shifted and truncated subMG {(X,, — a)*},>0. So WLOG assume
that X,, > a for all n (i.e. Xg, = a) and show:

EX, — EX,

]E[Un[a,b]} = b—a

The general idea of the proof is to use the discrete stochastic integral with
two different predictable processes, to obtain two bounds which can then be
combined into our final bound:

1. "Buy low, sell high:” H,, = 1g, <n<m, + ls,<n<r, + ...

{Hp}n>1 is predictable because each indicator function can be rewritten as:
I¢s,<n—1} 1{1,<n—1}c. Consider the discrete stochastic integral Y,, = (HX),:

Vo= (Xp, — Xg)) 4.+ (X1, = X, ) + (X = Xy ) Lnssy

n+1

‘ ]]-n>Su,

L+1) n+1

Un
= Z(XTz = Xs,) + (Xn — XSU.,
=1

> (b —a) - Up+ (X, — XSUnJrl) ’ ]1">5Un,+1
(b-a)-Uy (since X, > a = Xs,, )

v

Taking expectations, we have

EY, > (b— a) - EU,

2. ”Buy high, sell low:” K,, =1— H,

Define {Z,, }n>0 by Z, = X,,—Y,,. Then Z,, = (KX),. Note that {K,,},,>1 is
predictable and bounded because { Hy, }>1 is predictable and bounded. Thus
{Z,}n>0 is a submartingale and:

EZ, > EZy =EX, - EYy = EX)

Therefore EX,, — EY,, > EX, and so EY,, < EX,, — EX,.

Combining the two conclusions yields the desired result.
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4.7 Convergence theorems

The theorems in this section all deal with the general question of: If a sequence is
a martingale, then what conditions must be imposed to guarantee convergence?

Lemma 4.33. (Deterministic lemma)

Let {z,}n>1 be a sequence of real numbers. Then {z,,},>1 converges if and only if
the number of upcrossings Ula, ] is finite for any a < b.

Theorem 4.34. (Martingale convergence theorem)

Let {X,}n>0 be a submartingale. If sup, EX;" < oo, then X,, =% X, with
E| Xl < o0.

Proof. This proof has two parts. First we show that X, <% X, by the
upcrossing lemma. Then we show that X, has finite expectation by an ap-
plication of Fatou’s lemma.

1. Note that by our deterministic lemma, if X,, does not converge to X a.s., then
there must exist some a < b € Q such that Ux[a,b] = co. To show that this
is not possible, write:

{limsup X,, = liminf X,,} = r]{Uoo[r7 q) < oo}, r,g€Q

q>r

So fix r,q¢ € Q. To show Ux|r, q] < oo, we show that E(Ux|[r,q]) < co. To
show E(Ux[r, q]) < oo, we show that E(U,[r,q]) < oo for fixed n and then
apply MCT.

By the upcrossing lemma,

EX '
B(U,lr.q) < 2t
q—r

< sup,, EX; + |r|

q—r

Therefore by MCT,
EX

]E<Uoo[r, q]) < w

< oo by assumption

Thus since EX < o0 = X < oo a.s., then Uyglr,q] < oo as. for any
q > 1 € Q. Therefore:

P({limsup X, = lim iann}) = IP’( r]{Uoo[r7 q] < oo}) =1

q>r

And we can define X (w) = lim,— 00 Xp(w).

2. Write E| X | = EXE + EX . We show that EX} < oo and EX < cc.
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First consider the positive part:
EXE = /th;r dP

< lim inf/Xn+ dP (Fatou’s lemma)
<supEX;"
< oo (by assumption)
Now note that since {X,,},>0 is a submartingale, then EX,, > EX and:
EX- =EX' —EX,
<EX' - EX,
< sup EX,T —EXy

Since the RHS is constant over n, then EX is bounded so sup, EX, < oc.
Now following the above argument,

EX = /limX,f dP
< liminf/X; dP
<supEX,_

< o0

Example. (Counterexample: simple random walk)

This example shows that the conditions of the above theorem do not guarantee
convergence in L'.
Let {&;}i>1 be an iid sequence such that
1 1
PE=+)=7, PE=-1)=;

Let a filtration {F,,} be given by F,, = o(&1,...&,) and define {5, },>0 by:
So =1, Sn=1+Z§i
i=1

Let N = inf{n > 1 : S,, = 0} be a stopping time. Then since {S,},>0 is a
martingale, the sequence {X,, },>0 defined by X,, = Snynan is also a martingale.

X,, must converge to 0. To see this, note that if X,, = k # 0, then the next term in
the sequence is k£ + 1 so it does not converge. In other words, X,, can only converge
by having S, hit 0, i.e. by having the process Xy, stop at time N.

Now note that EX,, = 1 for all n while X, = 0 = EX,, = 0 as just shown, so that
convergence cannot occur in L.

65



Corollary 4.35. (Two easy corollaries of the MG convergence theorem)

1. If {X, }n>0 is a positive supermartingale, then there exists X, such that

X, 5 X, EXo <lmEX,

2. If {X,,}n>0 is a non-negative martingale, then there exists X, such that
X, 5 X, EXo <lmEX,

Proof. For the first, note that {—X,,},>0 is a submartingale and

supE[(—Xn)Jr} —0

Theorem 4.36. (Levy zero-one law)
Let {Fn}n>0 be a filtration with Foo = o(U52;F;). Let Z be a Fo.-measurable
random variable with E|Z| < co. Define Z,, = E(Z | F,). Then

Z,%% 7 and 2, 15 7

Remark. Why is this theorem called a ”zero-one” law? Because it can be
applied to the case when Z is an F,-measurable indicator function 14. Then
the sequence of conditional expectations E(14 |F,) converges to a random
variable which can only take value 0 or 1.

Proof. The general outline of the proof is to show (1) Z, %% Z,, and then
(2) Z, Ll Z, from which it follows that Z = Z, a.s.

1. We show that {Z,,},,>0 satisfies the conditions of the martingale convergence
theorem. Obviously, Z,, is F,,-measurable and has finite expectation. Also,

]E(Zn+1 |]:n) =K E(Z|]:n+1) |-7:n
=E(Z]Fn)
Also, note that

E(Zy) < E|Z,|
=E([E(Z| F)l)
<E[Z|

<0

Therefore we have that E(Z,) is bounded and so sup,, E(Z;}') < co. Therefore,
by the martingale convergence theorem, there exists X, such that

Zn “5 Zoo
1
2. To show Z,, L 7, we first prove a lemma:
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Lemma 4.37. Let Z be a Foo-measurable r.v. with E|Z| < co. Then, given
any m > 1, there exists 0 < k,,, < oo and an Fj, -measurable r.v. Y, such
that:

(a) E|Y;,, | < o0

(b) ElYs,, — Z| < o5

Proof. (Sketch)

We show that this holds for Z = 14, A € F. Then it will hold for
simple functions, and then general measurable functions by MCT.

Define the set G by the set of all sets A € F, such that, given any
m > 1, there exists 0 < k,,, < oo and B,,, € Fj,, such that

1
ElLa — 15| = P(AAB,) < o

Now note two facts:
(a) G contains U2 4 F,,, a m-class.

n=1

To see this, let A € F; for some J. Then for any m > 1, let k,,, = J and
B, = A.

(b) G is a A-class.
O
Returning to the proof of the main result, we apply our lemma immediately:
given m > 1, find 0 < k,,, < 00 and Y,,, € Fy,,, such that E|Z —Y,,,| <27™.
Let X, =E(Z — Y, | Fn). For n > ky,, {X,} is a martingale:

E(Z ~ Yo | Fas1) = E[B(Z = Yiu | Fai1) | Fo| = B(Z = Yo | Fo)
Now note that:

E|X,| = E[\E(z Y| fn)\]
(

SE |Z_Ym|)
1

<
= 9m
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Therefore it follows that:

E(Z - Z.|) =E[|Z - E(Z| F)]
—E||Z ~ Yo + Y~ E(Z| F)|
<E[|Z = Yol + Y ~E(Z| 5|

(Triangle inequality)
E(1Z = Youl) + E[|Yn —~ B(Z] 7,

—E(Z - Y,|) +E[\E(Z — Y| fn)l}

(Y, is Fp-measurable)

1
- 2m—1

Therefore for any m > 1, we have

1
limsupE(|Z — Z,,|) <

n—00 - 2m-l

Corollary 4.38. (Two easy corollaries of the Levy zero-one law)

1. Let Y3,Y5,... be a sequence of r.v.’s and let F,, = o(¥1,Ys,...). If Z is a

Foo-measurable random variable with E|Z| < oo, then

E(Z|Yi,....Ys) &5 Z and E(Z|Yi,...,Y,) 25 7

2. (Kolmogorov zero-one law)

Let Y1,Y5, ... be a sequence of independent r.v.’s. Let A € T, the tail o-field

defined by T'= N2_,0 (Y41, Yint2, - - -)-
For any given n, A is independent of F,,. Therefore
E(1a|Yy,....Y,)=Ely = P(A|Yy,...,Y,) =P(A)
And therefore we have
P(A) &% 1, and P(A) £5 1,
Theorem 4.39. (Convergence or divergence theorem)
Let {X,}n>0 be a martingale such that the ”step size” is bounded:
Jk < oo st | X, — Xn_1| <k Vnas.
Define the sets C' and D by:

C ={w: X,(w) — some finite value}

D = {w : limsup X, (w) = oo, liminf X, (w) = —oo}
Then: P(CUD) =1.

68



Proof. Assume WLOG that Xy = 0 (otherwise consider {X,, — Xy }). We only
need to show that C' > D¢ since then P(C UD) >P(D°UD) = 1.

We first break the proof into two parts. First, we show that the assumptions
imply that the process does not take ”too large” negative values, and therefore

{X, — some finite value} D {inf X,, > —o0}

Then we show that the assumptions imply that the process does not take ”too
large” positive values, and therefore

{X, — some finite value} D {sup X,, > —oo}

1. The process does not take ”"too large” negative values:

Fix some L > 1. Define the stopping time 7;, = inf{n > 0: X,, < —L}. Note

two facts about the stopped process { X1, an tn>0:

(a) X1, an > —(L + k) by definition of TJ,.

(b) {X7,An}n>0 is a martingale, so { X7, an + (L + k) }n>0 is & non-negative

martingale.

Therefore by the martingale convergence theorem,

X1, an + (L + k) £% something finite

In particular, if Ty, = oo, i.e. X,, > —L, then the convergence to a finite r.v.

still holds. And since our choice of L > 1 was arbitrary,
{w: Xp(w) = something finite} D {T, = oo}, VL > 1
={X,>-LVn}, VL >1
DU {X,, > —LVn}
= {inf X,, > —o0}

2. The process does not take "too large” positive values:

Fix some L > 1. Follow the same argument above using the stopping time

Tr, =inf{n > 0: X,, > L} and noting that X7, A, < (L + k).

Therefore we have shown:
C={w: X,(w) — finite} D B = {sup X,, < oo} U {inf X, > —o0}
And since sups are decreasing and infs are increasing,

B > {limsup X,, < oo or liminf X, > —occ} = D¢

Theorem 4.40. (Conditional Borel-Cantelli lemmas)

Let {A,}n>1 be a sequence of events with A,, € F,, for all n. Define
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1. B, =UY_, A,
2. B=A4,i0. =N, Ux_ A, =limB,
Then the following are true:
1. P(Bpy1 | Fn) &5 15
2. Apio.={w: Y7 P(A, | Fnoo1) = oo}
Proof. We prove the two parts separately:
1. (of P(Bpyy | Fp) L35 15p)

Fix n > k. Then 15 <1p <1p, and:

n+1
E(lp|Fn) <E(lp,,, | Fn) <E(lp, | Fn)
Thus, rewriting, we have

P(Bu:n) < IP)(BnJrl |-7:n) < P(Bk |-7:n)

Taking lim inf and lim sup over n and applying the Levy zero-one law to the
leftmost and rightmost term, we have:

1p <liminfP(Bp41 | Fn) < limsupP(Bp41 | Fn) < 1p,
Letting &k — oo, then 1z, — 1p and we obtain:

1p <liminfP(By41 | Fn) < limsupP(B,4+1|Fn) < 1p

2. (of Apio. ={w:> 02 P(A, | Fo1) = oc})
Define the sequence {X,, },>0 by Xo = 0 and:

Xn

i (L, = P(An | Fn)|
m=1
Xn+1 =X, + []lAn+1 - IED(AHH |]:n)}

Note two facts about this sequence:

(a) {X,}n>0 is a martingale:

E(Xp1 | Fn) = X0 +E(La,,, [ Fn) —P(Ap | Fn) = X,
(b) {X,}n>0 has bounded increments:

‘XnJrl - Xn

- ‘MW CP(An | F)| <1

Therefore, by the convergence or divergence theorem, only two things can
happen:
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(a) C ={X, converges to some finite number}
(b) D = {limsup X,, = o0, liminf X,, = —o0}
Now note that we can write:

n

X, = z_:l]lAm— ZP(Am|fm_1)éA—B

m=1
where A, i.o.={} " 14, =00} =A.

The proof is completed by noting that if X,, converges to some finite value (i.e.
w € C), then A = oo if and only if B = oo; similarly, if X, has lim sup = co
and liminf = —oco (i.e. w € D), then it must be true that A = co and B = cc.

O

Theorem 4.41. (Bounded OST)

Let {X,,}n>0 be a submartingale and let T' < oo be a stopping time. If:
1. ET < o0
2. E(JAY || Fno1) < Bon {T > n}

Then:
E(Xr|Fo)>Xo = EXr>EXp

Proof. We check the conditions for showing that E(| Xt — Xpax|) — 0.
1. E(|X7|) < o0
Writing X7 = Xo + 22:1 AX | we have

T
| X7| = [Xo + Z AN
m=1
T

< [Xol + Z 1A,

m=1
= |Xo| + Y 1AX] - Loner
m=1

£y
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Taking expectations, we have

o)
E|Xr| <EXo|+ Y E(JAX] Lnsr)

m=1

< E|Xo| + i E[E(Iﬁﬁl L | fm—l)}
m=1

< E|Xo| + i E[lmg : E(IAiI |fm,1)}
m=1

<E|Xo|+B- ) _ P(T >m)
m=1
(by assumption)
2. E(|X,] - ]szn) —0
Note that | X,| - 1r>n <Y - Ip>,. Therefore, it is sufficient to show:
E(Y . I]-TZn) — 0

To see this, note that T' < oo and Y - 17>y, 2% 0. Establish the fact that
EY < oo, and then apply DCT to the sequence Y - I7>,,.
O

Theorem 4.42. (Generalization of Wald’s lemma)
Let {&}i>1 be an independent sequence such that
L ElGI <k Vi
2. p <E& <pa Vi

Let T be a stopping time with ET < oo and let the filtration {F,,},>0 be given by
‘Fn = 0(513 cee agn) Then:

ET -y <ESp <ET - po
Remark. Compare this to the non-OST result:
nuy <ES, < nusg

Proof. Define the sequence {X,,}n>0 by Xo = 0 and X,, = S,, — nu;. Note
that {X,,}n>0 is a submartingale:

IE(Xn-&-l |]:n) =Xn+ IE(gn+1 — M |]:n)
=X, +E({u41 — 1) (by independence)
> Xy

To apply the bounded OST, we need to check the step size condition:
E[‘Xn - Xn71| ‘ ]:n71:| = E[lgn - Ml‘ ’ ]:nfl}

= E|£n - ,LL1|
< E[én| + ]
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Thus each step is bounded by k + |u1|. Therefore by OST,
EXr >EX, = E(Sp—Tw)>0

To show the upper bound, note that {Y},},>¢ defined by ¥,, = S,, —nus is a
supermartingale, so that {—Y,,},,>0 is a submartingale. Then follow the same
argument as above.

O

4.8 Boundary crossings and Azuma-Hoeffding
This section is motivated by a class of boundary crossing questions: given a random
variable or process, what is the probability that it will cross a certain boundary?

First consider studying whether or not a boundary crossing will exist at all (for the
case of a simple mean zero iid process):

Theorem 4.43. (Existence of a boundary crossing)

Let {&}n>1 be an iid sequence. Assume E¢ = 0 and fix a,b > 0. What is the
probability that there exists some n such that S, > a + bn?

P(3n>0:S, > a+bn) <exp(—ba)
where 6 > 0 satisfies E(e) = .
Proof. Note that S, —bn =", (& —b), so:
P<3n LSy >a+t bn) - ]P’(Hn S -b = a)
i=1
Let S, = 321" (& —b). Then for any 6 > 0,
P(3n: S, > a) = P(In : exp(hS,) > exp(fa))
Now define the sequence {X,, },>0 by X,, = eSn and Xo = 1. Note:
E[Xni1 | F| = e B[00 | 7]

+  E(efn+1
— 05 % (by independence)
e

= X, (by assumption)

Therefore {X,,},>0 is a positive martingale. Thus by the supermartingale
maximal inequality,

AP <suan > )\) <EXg

n>0

Letting A = €’® and noting that, in general, P(In : X,, > a) = P(sup X,, > a)
gives the desired result.
O
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Now suppose are interested in the first time a process escapes out of some fixed
interval (a,b). The main question of this section is: What is the probability
that the first crossing will be to above/below?

First, we prove a theorem which gives us the crucial result regarding St to allow us
to calculate these bounds. Then, we prove a related theorem that provides sufficient
conditions for the conditions of the first theorem to hold.

Theorem 4.44. Let {&;} be iid and let T be a stopping time with ET < oo. Also
let a filtration {F,,},>0 be given by F,, = o(&,...,&,). Suppose

1. 36 > 0 such that E(e%) = 1 for all i
2. forn<T,S,<B
Then E(e?7) = 1.
Proof. Define the sequence {X,,},>0 by Xo =1 and X,, = ¢?S». Note
E(Xns1|Fn) = e -E(e?n 1 | F,) = €5 - E(et1)

Thus { X, }n>0 is a martingale. If we show that the assumption of the bounded
OST hold, then we will have EXt+ = EXy = 1 and we are done.

By assumption, ET" < co. To show the other condition, note:
E(IAY[|Fa-1) = E(le”" — 51| F, 1)
= IS ']E(|60£" — 1||]-'n_1)
< e?%n-1 [Eefr 1| (by Triangle ineq.)

< 2693"’1

Now note that by assumption, for n < T (ie. n—1 < T), e?n—1 < 9B,
Therefore
E(|A)[|Fno1) < 2P forn<T

So the OST holds and we are done.
O

This next theorem provides a set of convenient sufficient conditions to allow us to
satisfy the conditions of the first theorem:

Theorem 4.45. Suppose {;} are iid with E&; < 0, P(§; > 0) > 0, and |&] < L.
Fixa<0<b. Let T =inf{n >0:S, <aor S, >b}. Then:
1. ET < o0
2. 30 > 0 such that Ee?s =1
Proof. We prove (1) first and then (2) second:
1. First note that 7' < co because S,,/n <% E¢; < 0.
Then using T' A n so that E(T' A n) < co, Wald’s lemma gives
ESran = BE - E(T An)
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Furthermore, since |§;| < L, then |Sta,| < |a|+]b|+L for all n > 1. Therefore,
St an is bounded, so by DCT we have ESpa, — EST < co. Furthermore, by
MCT, we have E(T A n) — ET. Plugging into the Wald’s lemma equation,

we obtain ET < oo.

2. Define ¢(0) = Ee’:. Note that ¢'(0)]g—o = E&; < 0 with ¢(0) = 1, so that ¢

is initially decreasing for 6 > 0.

However, since P(¢; > 0) > 0, then ¢(0) = Ee? — 0o as § — oo. Therefore

¢ must cross 1 from below at some 6 > 0.

How to calculate the actual bounds:
Since |¢;| < L, note that:

1. If St crosses to above at b, then its minimum value is ST = b and its maximum
value is S = b+ L

2. If St crosses to below at a, then its minimum value is St = a — L and its
maximum value is St = a

Since Ee?7 = 1, then
1. Using the maximum values, P(Sz > b) - e?®+E) 4 [1 —P(Sp > b)] - €% > 1
2. Using the minimum values, P(Sp > b) - e?* + [L — P(Sp > b)] - (= 1) > 1
Solve for P(St > b) in both to get upper and lower bounds.
Example. (Asymmetric simple random walk)
Consider the process {{;}i>1 with P(§; =1) =p and P(§; = —1) =1 — p.

Let p < 1/2 so that E§; < 0 and || < 1. Let T =inf{n >0: 5, <a; or S, > b}
with a < 0 < b, a,b € Z so that either S7 = a or St = b.

Calculating P(St = b) directly is hard, but it is easy to check that the conditions of
the previous theorem are satisfied, so that we can use the OST-derived result from
the first theorem: EefST = 1.

1. Step 1: Get 6 > 0 such that Eef%: = 1.

Rewriting the condition Ee?® = 1, we have

1 _
p+ell-p =1 = 6O=log <p>
p
2. Step 2: Apply the OST result
Using the fact that either S7 = a or ST = b, we have
Ee?57 =1

P(St = b)e?® + (1 — P(Sy = b))ef* = 1
b a
(s =) (L) - Bsr =) (2 =1

p
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And then solve the equation for P(Sy = b).

A powerful extension of this idea of boundary crossings is the Azuma-Hoeffding
inequality, which gives an exponential bound for the probability of a martingale
with bounded differences exceeding some interval.

Theorem 4.46. (Azuma-Hoeffding)
Let S, = Z?:l X;, and Sy = 0. Let {F,,} be defined by F,, = 0(X1,...,X,).

If {S),}n>0 is a martingale and |X,,| <1 for all n, then for any A > 0,

sz>xww<am<if)

Applying this again to the martingale {—S,, },,>0, we obtain

P(|S,| > A/n) < 2-exp (2/\2)

Remark. Since S, = > | X;, the condition that |X,,| <1 for all n is equiv-
alent to the condition that |S, — S,—1] < 1 for all n.

Lemma 4.47. If Y is a random variable with EY = 0 and |Y| < 1, then

2
Ee®Y < exp (i) for all @ > 0

Proof. Define the function f(Y) = e®¥ for —1 <Y < 1. Also, let the function
L(Y) for —1 <Y <1 be the straight line connecting f(—1) and f(1).

Note f is convex, then f(Y) < L(Y) for |Y| < 1. Also, L(0) = 2(e™® +e%).
Therefore:

Ef(Y) < EL(Y) = LE(Y)) = L(0) = 5(e™" + %)

The proof is completed by noting that 3 (e=* +¢e%) < ¢’ /2 for all a > 0 (treat
both as a function of a and take derivatives).
O

Proof. (of Azuma-Hoeffding)

Note that |X,,| < 1 and EX,, = 0 for all n since Sp = 0 and {S,},>0 is a
martingale. Thus our previous lemma applies.

The idea is to expand S,, using conditional expectation, and then use inde-
pendence to apply the lemma:

E (eo‘s" |]:n_1) = -1} (e"X" |]:n_1)

_ eaSnfl ,EeaXn

< eaSn,l a2/2

- €
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Taking expectations of both sides, we obtain:
EeaSn < e042/2 .EeaSn_l

Expanding Ee®%»-1 using conditional expectation as above and repeating n—1
times, we finally obtain:

EeaSn < e(na2)/2
Now note that
P(Sn > A/n) = P(e*5» > V™) (for o > 0)

< eI RS (by Markov)
< efa)\\/ﬁ . 6(noz2)/2

2
= exp (—a)\\/ﬁ—l— n(;)

Optimizing over o > 0 gives o = \/y/n.

O
Corollary 4.48. (Alternate statement)
With the same setup of the Azuma-Hoeffding inequality,
—)\2
P(S, > A) <exp (271)
Proof. Following the above proof, we again obtain:
Ee*n < e(na?)/2
Now using Markov in the same way as above, we have:
P(S, > \) = P(e*¥" > ) (for a > 0)
< e . Ee*S"  (by Markov)
< oA | g(na?)/2
= exp (—a)\ + n;Q)
Optmizing over a > 0 gives o = \/n.
O

The Azume-Hoeffding inequality immediately suggests a useful technique for eval-
uating the probability of an event of the form |Z — EZ]:

Theorem 4.49. (Method of bounded differences)

Suppose &1, ...,&, are independent. Let Z = f(&,...,2,). Also, assume that Z
does not change too much if any of the &;’s are changed, i.e.

|f(£17'--7£k7"'7£n)_f(é-la--'agllc?"'?gnﬂSl
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Where ¢, and &, are two realizations of the same random variable. Then for A > 0,

2
P(Z — EZ| > AWi) <2 exp <A2)

Remark. This proof assumes that the absolute difference is bounded by 1.
However, the result still holds if the difference is bounded by another constant
c. See the generalization of the Azuma-Hoeffding inequality above.

Proof. The proof is by the Azuma-Hoeffding inequality, using the trick of
independent copies.

Define S,, =E(Z|&,...,&n) — EZ. Note that:
1. {Sm}m>0 is a martingale.
2. If m=mn,then S,, =5, =72 —EZ.

Therefore if we can show that |S,, — S;—1]| < 1, then the result will follow
immediately from Azuma-Hoeffding.

Let &1,&5,...,&., be independent copies of the original &;’s. Note that:
Sm - Sm—l =
—E[f(€1 &) 161 bm| —E[F(E0r- &) €0, s

We would like to use linearity of expectation here to combine the two terms,
but we cannot because we are conditioning on different sub-o-algebras. To
remedy this, note that, since &,, L &,

E[f(fl,...,gm,...,fn)|§1,...,§m_1] _
:E[f(gl,...,ggn,...,gn)|gl,...,gm_1,gm}
Therefore we have:
|Sm — Sm-1] =
- ‘E{f(gl,...,gm,...,gn)—f(gl,...,,g;n,...,gn)|gl7...,gm} ‘
SE[[fEn e mrees ) = € Eimse e &) €0 G
<E[1&,. . &n]

4.9 Uniform integrability and branching processes

Question: if we know that X, Iox , then under what conditions can we also
1
conclude that X,, == X, E|X, — X| — 0?
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Definition. (Uniformly integrable)

A family of random variables {Y, : @ € I} is uniformly integrable if

lim sup E[|Ya| . ]].‘ya|zb} =0

b—o0o neJ

Remark. Why is this property called ”uniform integrability?” Because for a
single random variable X (on a finite measure space),

lim E[|X|-Tjxpss] =0 <= Xel

b— o0 -
This can be easily shown using DCT and by splitting the expression E|X| into
two integrals over disjoint regions.

Theorem 4.50. (Some properties of UI)
1. If sup, E(]Y,]?) < oo for some ¢ > 1, then {Y, : o € I} are UL
2. If {Y, : @ € I} are UI, then sup, E(|Y,]) < oo.

1
3. IfY, - Y and {Y, : n > 1} are UL then Y,, = Y also.

1
4. 1Y, %Y and {Y, : n > 1} are UL then Y, = Y also.

Remark. Note that for (3), the random variables must be defined on the same
probability space in order for convergence in P to make sense. However, for
(4), the random variables may be defined on different probability spaces.

Lemma 4.51. (An "absolute continuity” property)
Let X € L'(Q, F,P). Then given € > 0, there exists § > 0 such that for F € F,
P(F)<dé = E(X| -1p)<e

Remark. This result generalizes to arbitrary measurable spaces by monotone
convergence (see Leadbetter notes).

Proof. Suppose not. Then for some ¢g > 0, we can find a sequence {F,} of
elements of F such that for all n,

1

Define H = limsup F,,. Then Borel-Cantelli gives P(H) = 0 but (reverse)
Fatou gives E(|X| - 1) > €9, a contradiction.
O

Theorem 4.52. Suppose X is integrable. Then {E(X |G) : G C F is a sub-o-field}
is UL

Proof. Let E(X | G) be an arbitrary element of the above set.
Fix € > 0. By the above lemma, there exists § > 0 such that for F' € F,

P(F)<dé = E(X| 1p)<e
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By conditional Jensen and definition of CE, we have:

E[E(X|9)| - Linx jgyj>0e] < E[JE(X |G)] Tex) gy
< E[E(\Xl 1G)- ]IIE(\XIIG)>M]
=E [|X| lg(x| |9)>M}

Where the last step is because {E(|X||G) > M} € G. Now we show that
by making M large enough, we may make the measure of the set we are
integrating over < d. By Chebyshev’s inequality,

PE(X|]G) > M) <E[E(X|[G)]/M = E[X|/M

X is integrable, so choosing M > 0 large enough makes E|X|/M < §. There-
fore by our lemma, we have

]E{|X| Ag(x|1g)>M | <€

Therefore {E(X |G) : G C F is a sub-o-field} is UL

Corollary 4.53. (Uniform integrability of martingales)

If {X,, } >0 is a submartingale and sup,, E(|X,,|?) < oo for some ¢ > 1 (i.e. {X,}n>0
1

is UI), then there exists X such that X, 2% X and X, L, x.

Proof. Since sup,, E(]X,|?) < oo for ¢ > 1, then sup,, E|X,| < oo as well.
Therefore by the martingale convergence theorem, 3X with EX < oo such

that X,, =% X. Then since {Xn}n>0is UL, X, L—1> X also.
Definition. (Galton-Watson branching process)
Define the sequence of iid random variables
{&r:i>1, n>1}, E& =p < oo, Var(l') < oo

A Galton-Watson branching process {Z,,} is defined by Zy = 1 and the recur-

rence relation:
Zn
n
Zn+1 = § €z
i=1

This is a process that evolves in discrete time. At generation n, a random number
of children are birthed which then go on to make up the n + 1** generation, where
the # of births is iid.

Theorem 4.54. (Extinction probability)
Let P =P(Z,, = 0 eventually). What is P? Three cases:
1. p<1. Then P =1.
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2. y=1. Then P =1 also.
3. What about u > 17 Answer: P < 1.

Proof. 1t is easily shown (HW) that the sequence {Z, /u"} is a positive mar-

tingale. Thus
Z\ " Zn
() :supE<) =1< o0
u" n I

Therefore by the MG convergence theorem, 3W with EW < oo such that

supE
n

Zn a.s,
— = W
Mn

If we can show the convergence in L', then imE(Z,/u") = EW = 1. It
follows then that P(W = 0) < 1, and since W = lim Z,,/u"™ a.s., then P < 1.

So to show Z,/u™ Ll W, we only need to show {Z,/u"},>0 is UL To
show {Z,/p"}n>0 is Ul, it is sufficient to show that sup, E((Z,/u")?) <
0o. But since E(Z,/u™) = 1 for all n > 0, then it suffices to show that
sup,, Var(Z, /u™) < oc.

Let F,, be the information known up to time n:
fnza({ggnzz‘Zngn—l})

Where m only runs up to n — 1 since Z,, = ZZ"l‘l €1, Now note that:

Var(Z,) = E[Var(Zn |fn_1)} + Var {E(Zn |fn_1)}

Although Z,, is independent of F,,_1, once we condition on F,_; we know the

value of Z,,_1. And since Z,, = ZiZ:"l‘l 5;1_1 as noted above, then we have:

1. Var(Z,, | Fr—1) = Var§; - Z,,—1
9. E(Zn | Facr) = 1+ Zn_1
3. Var(E(Z, | F.—1)) = Var(u - Z,,—1) = p? - Var(Z,_1)
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Thus finally, we have:

Var(Z,) = o* - y" ' 4 % - Var(Z,_1)

Zn 1
Var (H") = o {02 T T ~Var(Zn71)}
o 2 V. Zn 1
n+1 + ar ’un 1
n+1
—e2 3 L
="
< o2 3 i
=

< oo (since p>1)

Therefore sup,, Var(Z,/p"™) < oo and so Z,/u™ is UL
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5 Weak convergence

5.1 Basic properties, Scheffe’s theorem

Recall that if p is a probability measure on (R, B(R)), then the CDF of y is:
Fu(z) = p((=o00,2])

Remark. In this notation, p is actually the induced probability measure of
some unspecified random variable X defined on some unspecified probability
space (Q, F,P):

w(B)=PweN: X(w) e B), BeB(R)
Definition. (Continuity point)
We call z a continuity point of F), if:

F#(a:) = Fu(xi) = l;TnleH(y)

Remark. Two observations:

1. This left-continuous condition is sufficient since all distribution functions are
right-continuous.

2. If x is a continuity point, then
p({z}) = Fu(z) — Fu(z™) =0
Theorem 5.1. (Convergence in distribution)
Let p and {ftn }n>1 be (induced) probability measures on (R, B(R)). TFAE:
1. For all continuity points = of F),, F,, () = F,(x)

2. For all bounded continuous functions g(-),

e

ie. if X, ~ pup and X ~ g, then E(g(X,,)) = E(g(X)).
3. There exists (Q, F,P) and random variables X,, : @ — R and X : Q — R with

X, ~ pp, and X ~ w such that Xn 235 X.
Proof. (3) = (2):

If g is continuous, then by the continuous mapping theorem
g(Xn(w)) — g(X(w)) for a.e. w

Now g is bounded, so there exists M such that |g(X)| < M for all z. Therefore
by DCT,

E(9(Xn)) = E(g9(X))
/ Ydpn(z) — / (A of measure)
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(2) = (1):

Fix some x. Note that (1) is equivalent to (2) with g(y) = 1,<,. However,
this function is not continuous, so...

Upper bound: Let g;(y) be a function which takes value 1 for all y < z, 0
for all y > x + %, and which decreases smoothly from 1 to 0 between z and

x+ % Thus g;(y) is continuous and g;(y) > 1,<, for all . So:

F,,(z) = / 1y<o dpin(y)

< [ o)

—>/g] )du(y) asn — oo
< Fu,(x+1/j)

Therefore, limsup,, F,, () < F,(z+1/j) for all j > 1. Thus, sending j — oo
and noting that F), is right-continuous, we obtain:

limsup F,, (z) < F,(x)

Lower bound: Let h;(y) be a function which takes value 1 for all y < — %,
0 for all y > z, and which decreases smoothly from 1 to 0 between = — % and

x. Thus h;(y) is continuous and h;(y) < 1,<, for all z. So:

Fn(@) = [ 1y dia)
> [ ) (v
5 / 88 1 = 00
> Fu(z —1/3)

Therefore, liminf, F),, () < F,(x—1/j) for all j > 1. Thus, sending j — oo,

we obtain:
liminf £, (2) > F, ()

only if z is a continuous point of F},. Thus, combining the two bounds, we
have F},, () — F,(z) if « is a continuous point of F),.

(1) = (2)

Fill this in later (see previous statement).

Example. (Showing N directly)
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Let X, have a Uniform{1,2, ..., n} distribution. We show that &= N Uniform(0, 1).

P (i‘;n < x) = P(X,, < |nz])

_ |nx]
T oon
=T asn— oo

Example. (Showing BN directly)
Let Xy ~ Geometric(f), i.e. P(Xg >i)=(1—0)" fori=1,2,...

We show that 0 - Xy % exp(l) as § — 0:

PO Xp <) =P (X < |Z])

0
“1-p (x> [3)
:1_(1_9)L%J
—1—e"

Corollary 5.2. (Skorohod corollary 1: continuous mapping theorem)

Fix a function g. Define the set D, = {z : g is not continuous at x}.
Suppose X,, —4 X and P(X € D,) = 0. Then g(X,,) % g(X).

Proof. Since X,, ~%» X, there exist X,, £ X,, and X £ X such that X,, *% X.
Furthermore, since P(X € Dy) = 0, then g(X,,) 2% 9(X).

4

Thus g(X,,) N g(X) as well. Note g(X,,) ig(Xn) and g(X) = g(X).

Corollary 5.3. (Skorohod corollary 2: expectation bounds)
Let X,, - X and g : R —[0,00) be continuous. Then Eg(X) < liminf Eg(X,,).

Proof. Since X, 4, X, there exist ):(n 4 X, and X 2 X such that X, &5 X,
Since g is continuous, g(X,,) <% ¢g(X). By Fatou’s lemma,

Eg(X) < liminf Eg(X,,)

4

Note g(Xn) ig(Xn) and g(X) 9(X).

Theorem 5.4. (Scheffe’s theorem)

Let (S,S,0) be a measure space and let {h,} : S — [0,00) and h : S — [0,00) be
S-measurable. Suppose:

L. [ghn(s)0(ds) = [sh(s)f(ds) =1
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2. hp(s) — h(s) for a.e.(f) s
Then [ |hn(s) — h(s)|6(ds) — 0.

Proof. By assumption, we have:
0= /S [1(s) — ha(s)] 01t
I _
- /S [1(s) — ha(s)] " (ds) - /S [1(s) ~ ha(s)] " 6(ds)

Thus the integral of the positive part is equal to the integral of the negative
part, so we can write:

+
/ ‘h(s) - hn(s)’ 6(ds) = 2/ [h(s) . hn(s)] 6(ds)
S S
Now since h and h,, take only non-negative values, then
+
0< [h(s) - hn(s)} < h(s)

And since f h(s) = 1 < oo, we can apply dominated convergence to obtain
the result.
O

Theorem 5.5. Suppose {X,,}, X are integer-valued random variables. TFAE:
L X, %X
2. P(X,=4) >PX=9)ViecZ
3. Ziez P(X,=i)-P(X=4)]—=0
Proof. (1) = (2)

Since {X,,} and X are integer-valued, then they are not continuous at any
i € Z. But they are continuous at ¢ + 1/2. Thus:

P(X,=1i)=P(X, <i+1/2) —P(X, <i—1/2)
—SP(X <i+1/2) —P(X <i—1/2)
=P(X =)

(2)=(3)

Consider the measure space (Z, 2%, 0), where @ is the counting measure. Define
the functions {h,} : Z — [0,00) and h : Z — [0, 00) by:

Then apply Scheffe’s theorem.
3) = (1)
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Fix some x ¢ Z so that z is a continuous point. Then:

P(X,, < z) X<x’_’ZIP’ — i)Y Px =
<> [P, = i)~ P(x = 1)
< i (P(Xn — i) —P(X = i)‘

i€Z

— 0 by assumption

Example. Binomial(n, A/n) — Poisson(\)

Theorem 5.6. Let A be the Lebesgue measure on B(R) and suppose {f,}, f are
pdfs on (R, B(R)):

/fnd)\ /fdA

Define {u,} and p, measures on (R, B(R))

:/Bfnd)\(;v) and M(B)z/deA(w)

If f.(z) = f(x) for a.e. x, then u, N L.

Proof. By Scheffe’s theorem, we have L' convergence of f, to f:

[ 1) = s@) arie) -

IP(X, <z)— X<:c]—’/ Fuly) dA(y /f )dA(y

So note that:

< / Fuy) — £ dA(w)

< [ 1100 - Flire)

5.2 Helly’s theorem

Definition. (Tightness)
We say that a family of random variables {X,, : « € I} is tight if:

lim supP (| X4| >b) =0
b—oo o
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Remark. Two observations:
1. We can also say that the corresponding family of probability measures {fiq :
a € I} (on (R, B(R))) are tight if:

lim sup pin ([0, b)) = 0

b—oo o

2. Compare this to the definition of uniform integrability:

lim sup E [|Xa| - 1jx, 0] =0
b—oo o

Theorem 5.7. (Equivalent definition of tightness)
The previous definition is equivalent to the following definition:

A family of probability measures {u, : a € I} is tight if, for every e > 0, there
exists a compact interval [a,b] such that p,([a,b]) > 1 — € for all a.

Proof. Assume that limp_,o sup, P (| X4| > b) = 0. Fix some € > 0. Then
there exists B such that, for all b > B, sup, P(|Xs| > b) < e. Then if p, is
the probability measure corresponding to X,,, we have sup,, piq([—b,0]) > 1—¢
for all b > B. Then u([—B — ¢, B +¢€]) > 1 — € for all a.

Now assume that, for every € > 0, there exists a compact interval [a,b] such
that pq([a,b]) > 1 —e¢for all . Fix € > 0. Then there exists [ag, bo] such that
sup,, fta([ao, bo]) > 1 —e. If X, is the random variable corresponding to pq,
then this is equivalent to sup, P(ag < X, < bp) > 1 —e.

Let ¢ = max{]aol, |bo|}. Then sup, P(|Xa| < ¢) > 1 — ¢, so that we have
sup, P(|Xa| > ¢) < e. Thus for any €, we can find a corresponding ¢ such that
sup, P(|Xo| > ¢) < e.

O

Example. (A collection of r.v.’s that are not tight)
Theorem 5.8. (Sufficient conditions for tightness, UI)
1. (Tightness) Suppose sup,, E|X,| < 0o or ¢ : [0,00) — [0, 00) such that
(a) ¢ is increasing
(b) ¢ is increasing as  — oo
(¢) sup, ElglXa] < o0
Then {X, : o € I} is tight.

2. (Uniform integrability) Suppose sup, E(|X,|?) < oo or 3¢ : [0,00) — [0, 00)
such that

(a) ¢ 100
(b) &/ 1 o0
(c) sup, E[¢|Xa[] < o0
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Then {X, : o € I'} is uniformly integrable.
Proof. We prove only the first condition of the first part (tightness).
Suppose sup,, E|X,| = ¢ < co. Then:

P(|X.| > b) <E|X,|/b (by Markov)

<e¢/b
sup P(|Xo| > b) < c/b

Sending b — oo gives the definition of tightness.

Definition. (Extended distribution function/EDF)
An extended distribution function is a function G : R — R such that
1. G is increasing
2. @G is right-continuous
3. limg— oo G(z) > 0 and lim, o, G(z) < 1
Remark. Any distribution function satisfies the definition of an EDF with
lim G(z)=0 and lim G(z)=1

r—r—00 T—>00
Theorem 5.9. (Helly’s selection theorem)

Suppose { Fy, }n>1 is a sequence of CDF’s. Then there exists a subsequence {Fy,, }>1
and an extended distribution function G such that F, (r) — G(x) for all contin-
uous points x of G.

Proof. The proof has two steps:
1. Construct G:

Let Q = {q1, ¢z, ...} be a denumeration of Q. Define a function Gy on @ by
considering each point sequentially:

Consider ¢1. {F,(g1)}n>1 has a convergent subsequence by Bolzano-Weierstrass.
Denote the corresponding subsequence of functions by {F),(1 ;)} and define:

Go(q1) = ]11)120 Foa.5)(q1)

Now consider ga. {F,1,5)(¢q2)} itself has a further convergent subsequence
by Bolzano-Weierstrass. Denote the corresponding subsequence of functions
by {Fp2,;)} and define:

Golge) = Jlgglo Fo2,)(q2)

and so on.

Now set n; = n(i,i). Then {F,,} is a subsequence of each {F; ;)}. Thus for
every ¢ € @, we have F,,,(q¢) = Go(q) as i — oc.
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Now G is defined only on ). So define the extension to R by:

G(z) = inf{Go(q)}, z€R

q>x

2. Show that G is an EDF:

0 < G(z) < 1since 0 < F,(z) <1 for all n, and G is non-decreasing since
each of the F,’s are non-decreasing. To see that G is right-continuous, fix
x € R and € > 0.

By definition of inf, there exists gy € @ such that Go(q) < G(z) + €. Then
since G is non-decreasing, if x < y < ¢qo then G(y) < Go(q) < G(x) + €.
That is, for y > x, whenever y — x < o then G(y) — G(z) < e. So G is
right-continuous.

3. Show convergence at all continuous points:
Let z be a continuous point of G. We show that limsup,_, ., Fy,(z) < G(z)
and liminf;_,o Fy,, (z) > G(x).

J

Fix ¢ € @ > x. Then F,,(x) < Fy,,(q) and:

hm Sup F’n]‘ (QC) S hm Sup F’n]‘ (q) = Go(q)

Jj—o0 j—o0

This inequality holds for all ¢ > z, so it also holds for inf,~,. Apply the
definition of G(x).

The proof for liminf; .. F, (x) is exactly analogous.

J

Corollary 5.10. Suppose the {F,},>1 in Helly’s selection theorem are tight.
Then G is a distribution function.

Proof. We first show limp_, o, G(b) = 0. We have just shown that for any
continuous point b of G,

lim F,;(b) = limsup F,,; (b) = G(b)

j—roo j—o0
This immediately implies that

sup F,(b) > limsup F, (b) > G(b)

n—oo

Now since {F},},,>1 is tight, limy_,oc sup,, [F(—b) + (1 — F,(-b))] = 0.

This implies that limp_, o sup,, F,,(b) = 0, which gives the result when com-
bined with the above inequality.

The proof for lim,_,. G(b) = 1 is exactly analogous, using the fact that
tightness also implies limy_, o, inf,, [Fn(b) +(1- Fn(b))] =0.
O
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Corollary 5.11. (Subsequence trick)

Suppose {X,, }n>1 are tight and X is some fixed distribution/random variable. By
Helly’s theorem, for any subsequence {X,,,};>1 there exists a further subsequence
{Xn, }j>1 and some Y such that

ani>Y as j — o0

If V£ X for any subsequence {m;};>1, then X, 4 X.
Proof. (by contradiction)

If X, 4, X, then there exists € > 0, a continuous point x of Fj, and some
subsequence my T oo such that

P(Xm, <z)-P(X <z)|>€¢ Vmy

This leads to the obvious contradiction.

5.3 Characteristic functions

Fact. (Two basic facts about z € C)
Representation: z = x + 4y. Then:

L sl = Va4 2

2. For x € R, €™ = cosz + isinz (i.e. € is on the unit circle of C)
Fact. (Two basic facts about a C-valued random variable Z)
Representation: Z = X + Y where X,Y are real-valued. Then:

1. EZ =EX +:EY

2. Jensen’s inequality: |[EZ| < E|Z]
Definition. (Characteristic function)
Suppose X is a real-valued r.v. Then the characteristic function of X is:

bo(t) = Ee™ t € R
= E(cos(tz) + isin(tx))

Corollary 5.12. (Three easy facts)

1. Since €%® is on the unit circle in C, then

|E6im‘ S E|eito;| S 1

2. The CF of a sum of independent r.v.’s is the product of the CF of each of the
individual r.v.’s.
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3. If u is the distribution of X, then
ox(t) = [ e ap = [ et aua
Q R
Theorem 5.13. (CF’s are continuous everywhere)
For any r.v. X and any ¢t € R, ¢x(t + h) = ¢x(t) as h — 0.
Proof.
dx(t +h) — ¢X(t)’ _ ‘]E(ei(t+h)X _ eitX)‘
_ ’]E(eitX(eihX _ 1))’
< E|:|eitX| eihX — 1@

:EeihX—l‘

Now observe that |e/"X — 1| — 0 as h — 0 and apply DCT using:

e X — 1) < et X 41 =2

Theorem 5.14. (The inversion formulas)

1. Suppose X has distribution pu and CF ¢x(-). Then for real a < b:
1 1 T e—ita _ o—ith
(e b)) + gulfah) + (o)) = Jim oo [ EE S g ar

2. If X has density fx(-) with respect to Lebesgue measure, then:

¢X(t) — Eeitz — /OO eitI . fX (I) dx
And we have: s
fX (:L’) / e_m” . ¢X (t) dt

:% .

Remark. These formulas explicitly link CF’s and distributions, showing that
if two r.v.’s have the same CF, then they have the same distribution.

Example. (Two easy examples)
1. (Sum of normal r.v.’s)
If X ~ N(p,0?), then ¢x(t) = exp(itu — (t20?)/2).
Suppose X; ~ N(0,0%) L X3 ~ N(0,03). Then:

202 t202 t2
oxuinsl) =ew (<) oo (<552 ) —exp (<Gt o)

therefore X; + X5 ~ N(0,0% + 03).
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2. (Exponential r.v.’s)

Let X ~ exp(1), with ¢x (t) = [} e " dz = 5.

Suppose Y is double exponential. Then

() = 5 exp(=yl) = Sdist(X) + Sdist(~X)

Therefore we have:

1

ox(t) + §¢—Y(t)

ox(t) + 5ov(~1)

1 11

Tt T2 T1rt
2

11— 22

1

142

Py (t) =

NI = NI R N —DN =

which is the CF of a standard Cauchy distribution.
Theorem 5.15. (Dual pairs)
Let ¢x be the CF of ar.v. X.
Assume ¢x (t) € RT\ {0} for all t € R and [*_¢x(t)dt < co. Then:

dx(t)
1. 27!‘})5)(((2)) is a pdf

2. If Y has the above pdf 27?}:((?0), then ¢y (t) = fx (@)

Proof. We prove the two parts in order:

1. Let ¢x be a CF satisfying the conditions of (1). Note ¢x(t) € (0,1]. We need
to show that the quantity integrates to 1. By the second inversion formula,

@ =5 [ e o fx0) =5 [ oxa

Therefore we have: - )
_— t)ydt=1
/_Oo 2 Fx (0) ox ()
2. First, note that if ¢x € R, then it has no imaginary component:

¢x (t) = E(cos(tx)) + i - E(sin(tz)) = E(cos(tx))

Then since cos(tx) = cos(—tz), ¢x is symmetric about 0. Now write ¢y as a
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function z to avoid confusion later:

by (x) = Ee'™v

= / e - fy (y) dy

— 00

- > iz ¢X(y)
*[meydﬁﬂmw

Now since we are integrating over the entire real line, we can make the change

of variable t = —y and use symmetry of ¢ x to obtain:
[eS) ) t)
) = eiwt ¢X( dt
¢v (@) /_OO 27 fx (0)

Applying the second inversion formula gives the result.

Example. (Double exponential/Cauchy)

Let X ~ double exponential. Then we have

1

fx(@) = ge(-le), ox(t) = 1

2
Then the dual density is Cauchy:

oox(t) 1
Frlt) = 21 fx(0)  w(1+&2)
with corresponding CF: ®
_ Ix®)
(by(t) - fX(O) =e€

Also note that the sample mean of independent Cauchy r.v.’s is again Cauchy:

n

oy (t) = g5, (t/n) = [ ov.(t/n) =71

i=1

5.4 The continuity theorem, iid CLT

Fact. (Important identity for e)
If ¢,, = c € C, then (1 + ¢, /n)™ — €°.
Theorem 5.16. (Parseval identity)

Suppose pu, v are probability measures on R (e.g. distributions of some random
variables X, Y'). The corresponding CF’s are:

o0 o0

o) = [ eTape). a0 = [ i)

— 0o —0o0
Then in fact:

/_ O; ¢u(t) dv(t) = /_ O; b, () du(t)
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Remark. This tells us that we can always get information about a probability
measure j using its CF ¢, and a ”good” probability measure v of one’s choice.

Proof. Suppose X ~ u 1LY ~ v. Then:
Ee™XY = E[B(c™Y |v)]
=E(¢x(Y))

/ ¢, (t)dv(t

Conditioning with respect to X and following the same steps gives the other
side of the equality.
O

Corollary 5.17. If i is some probability measure and X ~ p, then:

sin(cx
]E{ cT ] 2c/ fult)

Proof. We apply Parseval’s identity with v = the Uniform probability measure
on [—¢,c] for ¢ > 0. The density is: f,(z) = 1/2¢, —c < = < ¢, so the
characteristic function is:

c . 1
_ itx
o, (t) = / e o dz

—C

:/ cos(tz) dx—l—i/ sin(tx) da

2c 2c

—C —C

:/ cos(tx) de
2c

—cC

sin(tc)
tc

Now let u be a probability measure on R. The LHS in Parseval’s identity is:

/ 6, (t) d(t %U

And the RHS is:
[ outaun = [~ 2D qun - |

tc cx

Where the last equality follows because X ~ p. Therefore LHS = RHS by
Parseval and we are done.

O
Theorem 5.18. (Converse to continuity theorem)
Suppose X, —%, X. Then ox, (t) = ¢x(t) for all t € R.
Proof. Tt X, N X, then Eg(X,,) — Eg(X) for all bdd cts fns g.
O
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Theorem 5.19. (Continuity theorem)

Suppose {X,, },,>1 are real-valued r.v.’s with corresponding CF’s {¢,, }»>1. Suppose
there exists some function ¢, (t) such that Vt € R, ¢,,(t) = ¢oo(t). If either of the
following hold:

1. {X,}n>1 Is tight.
2. do(t) > 1last—0

Then X,, % X, where ¢x () = doo ().

Remark. Since CF’s are continuous everywhere, then they are continuous at
0. Also, ¢(0) = 1 for any CF ¢. Thus if one can show that ¢ is a CF of
some 1.v., then (2) is automatically satisfied.

Proof. We first show (1), and then show that (2) implies (1).
1. Assume {X,,},>1 is tight.

Then given any subsequence {m;} 1 oo, there exists a further subsequence

{n;} C {m;} such that X,, %Y as j — co. Thus ¢n, (t) = ¢y (t) for some
Y. But since ¢, (t) = ¢oo(t), then by uniqueness of limits ¢y () = oo ().

Thus since this holds for arbitrary subsequences and CF’s uniquely charac-
terize distributions, then for any subsequence {m;}, there exists a further

subsequence {n;} such that X, 4 Y. Thus by the subsequence trick,
X, %5 ¥ where Y has CF Poo(t).

2. We want to show that limsup,_, . sup, P(]X,| > k) = 0. First observe that:

k
P(|X,| > k) <2-E [(1 - 2Xn|> : ]1|X1L>k]

To see this, note that if | X,,| = k, then (1 — ﬁ) = 1 and the relation holds

with equality. Then note that on the set |X,,| > k we have (1 — ﬁ) > 1.
Now in order to introduce CF’s into the picture,

P(IX,| > k) < 2-E (1 - c|)1(n> - ILXn|>k:| (c = 2/k)

Coom <1<|X>> .nlwk}

c| Xy
—5.E [ 1 sin(cX,,) L
= I 70Xn [ Xn|>k
[ sin(cX,)
<2-E[l—-——=
- cXp, }

Applying the corollary to Parseval’s identity, we obtain

C

P(|X,| > k) < %/ (1= ¢n(t))dt

—C
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Now ¢, (t) = ¢doo(t) as n — oo and |¢,(t)] < 1 for all n, so by DCT,

/C c
—C —C

(1_¢n(t))dt_> (1_¢oo(t))dt
Thus we can take limsups of both sides in the above inequality to obtain:

1 C

fimsupP(X,| > k) < 7 [ (1= o)
n—00 CJ_¢

We want to show that limy_,., LHS equals zero. Since ¢ = %, then it is

equivalent to show that lim._,o RHS equals zero.To see this, note that the

condition ¢oo(t) — 1 as t — 0 guarantees that:

C

tim [ (1 uelt)) dt = 0

Therefore by an application of L’Hopital’s rule:

C

. 1
Jim [ (0= bw()at =0

Thus we have shown lim supy, limsup,, P(|X,,| > k) = 0.

Fact. (Inequality from complex analysis)

2 m m—+1
<mm{ ™ 1yl }

eiy_ S (Zy)k
m! 7 (m+1)!

k!

k=0
Lemma 5.20. (Expansion lemma)

Fix m > 1 and let X be such that E(]X|™) < oco. Then:

()" m
ox(t)=> TIE(X’“) +o([t|™) ast—0
k=0
Remark. What is the motivation for this? Note the deterministic identity:
ite _ N (it0)™
e = Z m)!

m=0

which suggests possibly:

s = e [E"]

m=0

[~

Z (Zz;n E(Xm)

m=0

Proof. Using y = tx in the above inequality and applying Jensen’s inequality,

we can bound the remainder:
2thm tm+1Xm+1
< & [ { 27" 17X

E(eitm) _ Z ( t) E(Xk)

| | ’ |

= k! m! (m+1)!
tHm t-1X m+1
= i -E |min < 2| X|™, - X

m! m+1

97



We want to show that the RHS is o (|t|™). So if we divide the RHS by |¢|™,
then we only need to show that the expectation — 0 as t — 0.

Let z; = min{-,-}. Note that z; — 0 as t — 0, and there exists to such that:
|2e] < 21X|™ V[t] < [tol

And since E(]X|™) < oo, then the result follows by DCT.

Theorem 5.21. (Weak Law of Large Numbers)

Let {Y;};>; be iid and E|Y;| < co. Let EY; = p1. Then S, /n —% pu.

Remark. This implies S, /n RN W since p is a constant.

Proof. We want to show that ¢g, /,(t) = ¢, (t) = e"*. Note:

b5, /n(t) = B |52/
= ¢s,(t/n)
n
— (#v.(t/m)
o UDES
n
So by the identity at the beginning of the section, we want to show that
n(¢y,(t/n) — 1) — itu. By the expansion lemma,

by, (tfn) =1+ "2 4 o (t]/m)

Therefore:

n(@y, (t/n) = 1) = itp+mn-o(|t|/n)
o ([tl/n)
tl/n

— ity as n — 00

=ity + |t] -

Theorem 5.22. (iid Central Limit Theorem)
Let {Y;};>1 be iid with EY; = 0 and EY;> = 6% < 0o. Then S,,/v/n — N(0,0?).

Proof. By the continuity theorem, sufficient to show that for fixed t € R,

2.2
¢s,/n(t) — exp <—t;)
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As in the proof of the WLLN above,
bs, /) yn(t) = ¢s,(t/v/n)
= (éwtt/vi)
- [1 metiym -0y

Again, we need to show that n(¢y, (t/\/n) —1) — —t?0%/2. By the expansion

lemma,
i’t?
Ovi(t) = 1 +itEY; + —-EY7 + o (|t]*)
t202
=1-— +o ([t]*)

Oy (t/V) = 1= S 4o (1t /n)

This gives us that:

20.2
Wy, (t/v/) — 1) = = o= 0o (1t2/n)

Noting that n - o (|t|*/n) — 0 as n — oo completes the proof.

5.5 Lindeberg-Feller CLT

Lemma 5.23. (Important fact)

Suppose wy, ..., w, and z1,..., 2, are € C with |w;| <1, |z;| < 1. Then:
n n n
Hwi_Hzi SZ\wi—2i|
i=1 i=1 i=1

Proof. Expand the difference of products inside the modulus like so:

n n n n
[Twi—11#={1Twi—=]w
i=1 i=1 i=1 i=2
n n
+ Zlei*Zﬂszi
i=2 i=3
n
+ zleHwi—...

i=3
+ (ot 2120 21 Wy) — 2122 .. 2y

Now note that for the first group in the RHS,

n n
[[wi-=]]w
i=1 i=2

n
= H|U/z| wy — 2| < Jwp — 21
i=2
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And for the second group in the RHS,

ZIsz_leQsz —z1H Swil - [wa = 2] <wz — 2o

And so on.

Theorem 5.24. (Lindeberg-Feller CLT)

Let X, i for k <n,n > 1 be a triangular array of mean-zero random variables with
EX?, =02, < oo. Assume that:

1. Within n, X, 1,..., X, are defined on the same probability space and are
independent.

2. There exists 0 < oo such that > , 02, — 0% as n — o0.
3. Forany e >0, > " | E(X7 ;- 1x, i|>6) — 0.

Let S, =" | X»,; and Var(S ) S0 Var(X,;) = Y7, 02 ,. Then:

S, —% N(0,02)
Proof. Define ¢, ;(t) = E(e!*¥»4). By the expansion lemma,

2 2

D=6 and 6.0 =1- 22 4o (2)
i=1

Step 1: show that )" o), — 0 as n — oc.
First we show that maxi<j<p Uw — 0 asn — oo:

)
]]_‘an‘>€)+E(X ']]-\X,Mﬂ,\ﬁe)

E(X;
E(X;
Z ]l|Xﬂ 7|>€)—"_62
=1

IN
<.

The summation in the last step frees the bound from dependence on 7. So:
n
2 2
2,00 S 2 B L)+

The first term in the RHS — 0 as n — oo by UAN, and since €? is arbitrary
then maxi<j<, 0, ; = 0. Now note that:

n n
E Jf”-< max azj E 072”-
. T a<<n M 4 '
i=1 i=1

Send n — oo and apply the result just shown.
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2 _2
Step 2: show that ¢g, (1) — [[_, [1 - t%} as n — 0o

To show (2), we combine the lemma at the top of this section with the in-
equality from the previous section:

n n t20_2 i n
ot TT|1- 5] | <
1=1 =1 =1
< | EBIX 3 262X
SZE mm{ 3 0 2
= En:E [ min {t2X2 P H
. I n,? 6

[t X il

= zn:E :min {thfW 6} - 11XW,,>6}
+ zn:E [min {t2X721,i7 W} : ]1Xn,i<e}
=1
< |t2‘ iE<X72” : ]1|Xn,i|>e)
=1
3 1)
i=1

As n — oo, the first term — 0 by UAN, and the second term — € [t[202. So,

L t202
o0 TT 1“5
=1

Since this holds for any € > 0, then the remainder — 0 as n — 0o so

n t20'24
s, (1) = I [ 1—% as n — 0o

2,
¢n,i(t) - |:1 - QUn,i]

lim sup <e- |75|30'2

n—roo

f22

Step 3: show that [, {1 — %} — exp (—#) as n — 0o

Equivalently, we show Y ., log (1 — %aﬁﬂ) — —#. Note the identity:

| —

‘1og(1 —z) — (—a:)‘ <ecr? for0<az <

Applying this to our series, we obtain:

n t20'2‘ t20'2<
log [ 1 -~ ) - —Zomd

i=1 i=1
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The second term in the modulus — %02 and the RHS sum — 0 by the result

of part 1, and the proof is complete.
O

Corollary 5.25. (Typical application)
Let {Y,:}1<i<n be independent with EY;, ; = 0. Define:

Sp=> Yni, Si= ﬁ:ag = Var(S,)
L i=1

n V2.
> E <32 ' IL|Yn,1v,/sn|>e> =0

Then S, /S, — N(0,1).
Proof. Let X,, ; =Y,./Sy, and apply the Lindeberg-Feller CLT.

Theorem 5.26. (Lyapunov’s condition)
Suppose 39 > 0 such that
L E(|Yail*™) <ocforall1<i<n
2. L, =30 E(|Y,,:*T0) /820 — 0
Where S, = /> E(X? ;) = \/Var(S,). Then S, /S, — N(0,1).
Proof. We show that the condition of the " Typical application” is satisfied.

Fix some € > 0. Note that:

YL% L1 < YLQJ |Yn,i| ’
STQL ‘Yn,il/sn>€ = 87% €- Sn

Therefore it follows that:

i=1

Y L,
ZE ?'ﬂlYn,il/Snx §€7—>0 as n — 0o
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