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1 Measure theory and probability basics

1.1 Algebras and measure

Definition. (Probability measure)

Let (S,S) be a measurable space. If, for a measure µ, µ(S) = 1, then we say µ is a
probability measure.

Definition. (Random variable)

A measurable map X is a function from one measurable space (Ω,F) to another
measurable space (S,S) such that

X−1(B) = {ω : X(ω) ∈ B} ∈ F ∀B ∈ S

If the target space (S,S) = (R, B(R)), then X is called a random variable. If the
target space is (Rd, B(Rd)), then X is called a random vector.

Remark. We often write {X ∈ B} as shorthand for {ω : X(ω) ∈ B}.

Theorem 1.1. If {ω : X(ω) ∈ A} ∈ F for all A ∈ A and σ(A) = S, then X is
measurable.

Proof. Note that

{ω : X(ω) ∈ ∪∞i=1Bi} = ∪∞i=1{ω : X(ω) ∈ Bi}

{ω : X(ω) ∈ Bc} = {ω : X(ω) ∈ B}c

Therefore the class of sets B = {B : {ω : X(ω) ∈ B} ∈ F} is a σ-field. Then
since B ⊃ A and A generates S, then B ⊃ S.

Definition. (π-class, λ-class)

Let S be some space and let L,A be collections of subsets of S.

A is a π-class if it is closed under intersections.

L is a λ-class if

1. S ∈ L

2. If A,B ∈ L with A ⊃ B, then A \B ∈ L

3. If {An} is increasing with Ai ∈ L, then limn→∞An ∈ L.

Theorem 1.2. (Dynkin’s π − λ theorem)

For L and A given above, L ⊃ A ⇒ L ⊃ σ(A).

Lemma 1.3. (Identification lemma)

Suppose p1, p2 are probability measures on (S,S) and p1(A) = p2(A) for all A ∈ A.
If A is a π-class and σ(A) = S, then p1(A) = p2(A) for all A ∈ S.
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Proof. Define L = {A ∈ S | p1(A) = p2(A)}. Note that:

1. L ⊂ A is a π-class by assumption.

2. If we show that L is a λ-class, then the result follows.

To show the three properties of λ-classes:

1. S ∈ L because p1, p2 are both probability measures.

2. To show that A ⊃ B ∈ L ⇒ A \B ∈ L, use countable additivity.

3. To show that limAn ∈ L for increasing {An} ∈ L, use the continuity property
of measures.

Remark. (Lebesgue measure)

There exists a unique σ-finite measure Λ on (R, B(R)) such that

Λ((a, b]) = b− a

Thus to get the Uniform probability measure, simply restrict Λ above to [0, 1].
Uniqueness is shown by considering the π-class

A = {(a, b], a ≤ b ∈ [0, 1]}

and applying the identification lemma.

Definition. (Induced measure)

Let (S1,S1, µ1) be a measure space and let (S2,S2) be another measurable space.
Let f : S1 → S2 be a measurable function. Then we can construct a measure µ2 on
S2 (called the measure induced on S2 by f) by:

µ2(B) = µ1{s ∈ S1 : f(s) ∈ B}, B ∈ S2

If µ1 is a probability measure, then µ2 is also a probability measure.

Definition. (Law/distribution, distribution function)

Let (Ω,F ,P) be a probability measure space.

1. The law or distribution of a r.v. X is the induced measure on (R, B(R))
using the original probability measure P on (Ω,F) and the function X:

µ(B) = P(ω ∈ Ω : X(ω) ∈ B), B ∈ B(R)

2. The distribution function of a r.v. X is a function F : R → [0, 1] defined
by

F (x) = µ((−∞, x]) = P(ω ∈ Ω : X(ω) ∈ (−∞, x])

that is, it is the law of x evaluated on the Borel set (−∞, x].

Remark. The distribution function has three basic properties:

1. 0 ≤ F (x) ≤ 1 and F is non-decreasing.

3



2. F is right-continuous: xn ↘ x⇒ F (xn)↘ F (x).

3. limx→∞ F (x) = 1, limx→−∞ F (x) = 0

Theorem 1.4. (Probability integral transform)

Suppose F is a function satisfying the three properties of distribution functions
above. Then there exists a unique probability measure on (R, B(R)) whose distri-
bution function is F .

Proof. We know that the measure space ([0, 1], B([0, 1]),Λ), where Λ is the
uniform probability measure, exists.

Given F satisfying the three properties, define the map G : [0, 1]→ R by

G(y) = inf{x |F (x) ≥ y}

From G, obtain the induced measure µ on (R, B(R)) using Λ:

µ(B) = Λ{s ∈ [0, 1] |G(s) ∈ B}

µ is guaranteed to be a probability measure since Λ is a probability measure.
Then we see that

FG(x) = µ((−∞, x)) = Λ({y |G(y) ≤ x})
= Λ({y | y ≤ F (x)})
= F (x)

1.2 Integration

STUPID NOTATION NOTE:

Let (S,S, µ) be a measure space. Then the following are equivalent notations for
the integral of f with respect to µ:∫

S

f(s)µ(ds) =

∫
S

f(s) dµ(s) =

∫
S

f dµ

Now let (S,S, µ) be a measure space where µ is σ-finite. Define H+ to be the space
of all non-negative measurable functions f : S −→ [0,∞].

Theorem 1.5. There exists a unique map I : H+ → [0,∞] such that:

1. I(1A) = µ(A)

2. f, g ∈ H+ ⇒ I(f + g) = I(f) + I(g)

3. f ∈ H+ and c ≥ 0 ⇒ I(cf) = cI(f).
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4. Let {fn} be a sequence of functions in H+ such that fn(x) ≤ fn+1(x) for
each n. Also, let f be a function in H+ such that fn(x) → f(x). Then
I(fn)→ I(f).

Proof. (Sketch)

First, we define some notation:

I(f) =

∫
f dµ =

∫
S

f(s) ds

I(f1A) =

∫
f1A dµ =

∫
A

f dµ

We proceed by the Nike method, also known as the Eminem method: to prove
the first property, we ”just do it” and define I(1A) = µ(A). Furthermore, for
a simple function fn =

∑n
i=1 ci1Ai where the Ai’s partition S, we define

I(fn) =
∑n
i=1 ciµ(Ai).

To show linearity, prove an intermediate result. Let 0 ≤ f ≤ L be a bounded
function. Then for a sequence of simple functions {fk} such that fk ↗ f , then
I(fk)↗ lim I(fk) also. Then define I(f) by lim I(fk) and show uniqueness.

To show monotone convergence, note that each fn has an increasing sequence
of non-negative simple functions {fn,k}∞k=1 with limk→∞ fn,k(x) = fn(x) for
all x ∈ X.

Also note that the sequence {gk} defined by gk(x) = maxn≤k fn,k(x) is simi-
larly simple and increasing. Establish thte fact that for n ≤ k,

fn,k(x) ≤ gk(x) ≤ fk(x)

and take limits in the correct order to show that {gk} converges to f . Then
take integrals of the above expression and then take limits again to show the
main result (using the definition of an integral as the limit of integrals of
simple functions).

Example. (Counting measure)

Let the σ-field F = 2N and let f : N→ [0,∞). Also, let µ be the counting measure
on F , that is:

µ(A) = |A| = the number of elements in A, ∀A ∈ F

The question is: how do we calculate
∫
f dµ? First, define gn by:

gn(i) =

{
f(i), i ≤ n
0, otherwise

Note that gn ↗ f and that gn(s) =
∑n
i=1 f(i)1({i})(s), so gn is simple. We know
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how to integrate simple functions:∫
gn(s) dµ(s) =

n∑
i=1

f(i)µ({i})

=

n∑
i=1

f(i)

Then, invoking our theorem, we send n→∞ in the expression above to obtain the
integral

∫
f dµ.

Lemma 1.6. Suppose f ∈ H+ and suppose there exists a set A, µ(A) = 0 such
that f(s) = 0 on s ∈ Ac (f can be infinite on A). Then

∫
f dµ = 0.

Example. Let h1, h2 be such that h1 = h2 a.s. Then µ({s|h1(s) 6= h2(s)}) = 0.

Example. Let {fn}, f be such that fn → f a.s. Then µ({s|fn(s) 9 f(s)}) = 0.

Next, we discuss the notion of integrability of a function, which is simply a term
for whether or not a given function has a finite integral. First, we formalize some
notation.

1. For x ∈ R: x is x+ = max{x, 0} and x− = max{−x, 0}.

2. For a measurable function f : f+(s) = max{f(s), 0} and f−(s) = max{−f(s), 0}

3. f = f+ − f− and |f | = f+ + f−.

Definition. (Integrable function)

A measurable function f is integrable if:∫
f+ dµ <∞ and

∫
f− dµ <∞

And for a general (not necessarily non-negative) measurable function f , we define
the integral as: ∫

f dµ =

∫
f+ dµ−

∫
f− dµ

Theorem 1.7. For integrable functions f and g on a measure space (S,S, µ), the
following properties hold (all integrals with respect to measure µ):

1. For a, b ∈ R,
∫
af + bg = a

∫
f + b

∫
g

2. f ≥ 0 a.e. ⇒
∫
f ≥ 0

3. f = 0 a.e. ⇒
∫
f = 0

4. f ≥ g a.e. ⇒
∫
f ≥

∫
g

5. f = g a.e. ⇒
∫
f =

∫
g

6. |
∫
f | ≤

∫
|f |
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Definition. (Absolutely continuous)

Let µ and ν be measures on a σ-field S. We say ν is absolutely continuous with
respect to µ (written ν � µ) if

µ(A) = 0 ⇒ ν(A) = 0, A ∈ S

The general setup of the theorem is the following: let µ be a σ-finite measure and
let f ≥ 0 be a measurable function. Define the set function:

ν(A) =

∫
1Af dµ =

∫
A

f dµ

It can be easily checked that ν is a measure and that µ(A) = 0 implies that ν(A)
= 0 also, so that ν � µ. The Radon-Nikodym theorem gives us the following in
addition:

Theorem 1.8. Let ν, µ be measures with ν � µ and µ σ-finite. Then there exists
an a.e. unique measurable function f such that

∀A ∈ S, ν(A) =

∫
A

f dµ

We call f the Radon-Nikodym derivative or density, written f = dν
dµ .

Lemma 1.9. Suppose µ is σ-finite, f ≥ 0, g ≥ 0 are integrable, and the following
property holds:

∀A ∈ S,
∫
A

f dµ =

∫
A

g dµ

Then f = g a.e.

Theorem 1.10. (Change of measure)

Let X be a function (Ω,F ,P)→ (S,S) and let µ be the measure on S induced by X.
Let h : S → R be measurable and furthermore let E(|h(X)|) =

∫
|h(X)|dP < ∞.

Then:

E(h(X)) =

∫
Ω

h(X(ω)) dP =

∫
S

h(s) dµ(s)

Example. Let B∞ be our space of infinite coin tosses from before. Our underlying
probability space is (B∞, σ({Aπ}),P), where an element of B∞ is given by

ω ∈ B∞ = (ω1, ω2, . . .)

Let X : B∞ → R be defined by X(ω) = ω1. We are interested in calculating the
expectation of the function of our random variable: h(x) = sin(x).

By our theorem,

E(sinX) =

∫
B∞

sin(X(ω)) dP =

∫
R

sin(ω1) dm

where m is Lebesgue measure on B(R).
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1.3 Inequalities

Lemma 1.11. If ψ is a convex function on an open subset I ⊂ R, then for any
x0 ∈ I there exists a support line l0 such that

l0(x) ≤ ψ(x) ∀x ∈ I and l0(x0) = ψ(x0)

Proof. Convexity gives us two facts:

1. For any h > 0, applying the definition of convexity with α = 1/2 gives:

ψ(x)− ψ(x− h)

h
≤ ψ(x+ h)− ψ(x)

h

2. For any h1 > h2, applying the definition of convexity with α = h2/h1 gives:

ψ(x)− ψ(x− h1)

h1
≤ ψ(x)− ψ(x− h2)

h2

By (2) the sequences are monotone so their limits as h→ 0+ exist, so define:

ψ′−(x) = lim
h→0+

ψ(x)− ψ(x− h)

h
and ψ′+(x) = lim

h→0+

ψ(x+ h)− ψ(x)

h

By (1), ψ′−(x) ≤ ψ′+(x) for any x.

Then, for fixed z, choose some a ∈ [ψ′−(z), ψ′+(z)] and define the line ` by:

lz(x) = ψ(z) + a(x− z)

Clearly `(z) = ψ(z) and by monotonicity of limits, it is easy to see that

lz(x) ≤ ψ(x) ∀x ∈ I

Theorem 1.12. (Jensen’s inequality)

Let g be convex on I, an open subset of R. Let x ∈ I with probability 1 and assume
X, g(X) have finite expectation. Then

g(EX) ≤ E(g(X))

Proof. First note that EX ∈ I. So let `(x) = ax + b be the support line for
g(·) at EX. Then by the definition of support line we have

1. `(EX) = g(EX)

2. `(x) ≤ g(x) ∀x ∈ I

Taking expectations in (2) above, we obtain:

Eg(x) ≥ E`(x) = E(ax+ b) = aEX + b = `(EX)

Then noting (1) above, we are done.
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Theorem 1.13. (Holder’s inequality)

If p, q > 1 and 1
p + 1

q = 1, then for any random variables X,Y ,

E(|XY |) ≤ (E|X|p)1/p(E|Y |q)1/q

Proof. (Sketch)

Fix y > 0. Consider f(x) = xp

p + yq

q − xy. By finding the minimum of f(x),

we can show that f(x) ≥ 0 for all x. Then, choose

x =
|X|

(E|X|p)1/p
, y =

|Y |
(E|Y |q)1/q

and take expections of both sides of the inequality.

Theorem 1.14. (Markov’s inequality)

Suppose X is a real valued random variable, and ψ : R 7→ R a positive function.
Fix any set A ∈ B(R) (e.g. A = [a,∞)). Define iA to be inf{ψ(X) : X ∈ A}.

Then,
iAP(X ∈ A) ≤ E(ψ(X))

Proof. Note ψ(X) ≥ iA · 1X∈A. Take expectations.

Example. Suppose X ≥ 0, ψ(X) = X,A = [a,∞). Then,

aP(X ≥ a) ≤ EX

Similarly,
akP(|X| ≥ a) ≤ E(|X|k)

Example. Let Y ≥ 0 and EY 2 <∞. Then:

P(Y > 0) ≥ (EY )2

EY 2

Proof. Apply Holder’s inequality to Y · 1Y >0.

1.4 Convergence notions

Theorem 1.15. (Relationships between notions of convergence)

1. Xn
a.s.−→ X ⇐⇒ P(ω : |Xn(ω)−X(ω)| > ε i.o.) = 0 ∀ε > 0

2. Xn
P−→ X ⇐⇒ P(ω : |Xn(ω)−X(ω)| > ε)→ 0

3. Xn
Lp−→ X ⇐⇒ E|Xn −X|p → 0

4. Xn
Lp−→ X ⇐⇒ Xn

P−→ X
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Theorem 1.16. Xn
a.s.−→ X ⇒ Xn

P−→ X

Proof. Since Xn
a.s.−→ X, then by Egorov’s theorem Xn

a.u.−→ X. Then for any
δ > 0 there exists a set Bδ ∈ F with P(Bδ) < δ and Xn

a.u.−→ X on Ω \Bδ. So
for any ε > 0, there exists an N(ε, δ) ∈ N such that, for all n ≥ N ,

|Xn(ω)−X(ω)| < ε ∀ω ∈ Ω \B

In other words,

∃N(ε, δ) s.t. P(|Xn −X| ≥ ε) < δ for n > N

We can send δ → ∞ by letting N → ∞, which gives us the definition of
convergence in P.

Theorem 1.17. Xn
Lp−→ X for some p > 0 ⇒ Xn

P−→ X.

Proof. By an application of Markov’s inequality using φ(X) = |X|k,

ak · P(|X| ≥ a) ≤ E|X|k

Take k = p. Apply to the r.v. |Xn −X|, with A = [ε,∞) so that a = ε:

P(|Xn −X| ≥ ε) ≤
E|Xn −X|p

εp

Theorem 1.18. If Xn
a.s.−→ X and Xn

L1

−→ Y , then X = Y a.s.

Proof. Since Xn
L1

−→ Y , then there is a subsequence {Xnk} that converges
a.s. to Y (see section on Borel-Cantelli lemmas for proof).

Example. Lp convergence does not imply a.s. convergence, even if the sequence is
bounded.

Example. a.s. convergence implies Lp convergence if the sequence is bounded.

Theorem 1.19. (L2 weak law)

Suppose X1, X2, . . . , Xn are r.v.’s such that

1. EXi = µ ∀i ≥ 1

2. E(X2
i ) ≤ c ∀i ≥ 1

3. E(XiXj) = EXi · EXj , ∀i, j

Then
1

n

n∑
i=1

Xi
L2

−→ µ
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Proof. We want to show that E{
[

1
n

∑
Xi − µ

]2} → 0, n→∞.

Note that E( 1
n

∑
Xi) = µ. Then we have

E

{[
1

n

∑
Xi − µ

]2
}

= Var

(
1

n

∑
Xi

)
=

1

n2
Var

(∑
Xi

)
=

1

n2

∑
i

Var(Xi) +
∑
i 6=j

[E(XiXj)− EXiEXj ]


By our covariance assumption, the rightmost term is zero. Also, note that

Var(Xi) = E(X2
i )− (EXi)

2

≤ c+ µ2

So our final expression reduces to

E

{[
1

n

∑
Xi − µ

]2
}
≤ n(x+ µ2)

n2
→ 0 as n→∞

Theorem 1.20. (Bernstein’s theorem)

Suppose f : [0, 1]→ R is continuous. Then ∃{fn}n≥1, fn = nth degree polynomial
such that

sup
x∈[0,1]

|fn(x)− f(x)| → 0 as n→∞

Proof. Let x1, x2, . . . , xn, . . . be independent r.v.’s with P(xi = 1) = x and
P(xi = 0) = 1− x, where x ∈ [0, 1] is fixed.

Consider the functions:

fn(x) =

n∑
n=0

(
n

k

)
xk (1− x)n−k f

(
k

n

)
Note that, if Sn = the sum of the first n xi’s, then

fn(x) = E
[
f

(
Sn
n

)]
We want to show that lim supx∈[0,1] |fn(x)−f(x)| < ε for all ε > 0, so consider
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the quantity |fn(x)− f(x)|:

|fn(x)− f(x)| =
∣∣∣E [f (Sn

n

)]
− f(x)

∣∣∣
=
∣∣∣E [f (Sn

n

)
− f(x)

] ∣∣∣
≤ E

∣∣∣ f (Sn
n

)
− f(x)

∣∣∣
= E

[ ∣∣∣ f (Sn
n

)
− f(x)

∣∣∣ · 1|Snn −x|<δ
]

+ E
[ ∣∣∣ f (Sn

n

)
− f(x)

∣∣∣ · 1|Snn −x|>δ
]

for fixed δ > 0. Now note two facts:

1. supx∈[0,1] f(x) = M <∞ due to continuity of f and compactness of [0, 1].

2. f is continuous: for any ε > 0, ∃δ > 0 such that if | snn − x| < δ, then
|f( snn )− f(x)| < ε

Therefore we have that

E
[ ∣∣∣ f (Sn

n

)
− f(x)

∣∣∣ · 1|Snn −x|<δ
]
< ε

And that

E
[ ∣∣∣ f (Sn

n

)
− f(x)

∣∣∣ · 1|Snn −x|>δ
]

≤ E
[ ∣∣∣ f (Sn

n

) ∣∣∣ · 1|Snn −x|>δ
]

+ E
[ ∣∣∣ f (x)

∣∣∣ · 1|Snn −x|>δ]
(Triangle inequality)

≤ E
[
M · 1|Snn −x|>δ

]
+ E

[
M · 1|Snn −x|>δ

]
= 2M · P

(∣∣∣Sn
n
− x
∣∣∣ > δ

)
≤ 2M ·

Var(Snn )

δ2

(Markov’s inequality)

= 2M · p(1− p)
nδ2

≤ 2M · 1

4nδ2
=

M

2nδ2

And finally, putting the two pieces together, we have

|fn(x)− f(x)| ≤ ε+
M

2nδ2
, ∀x ∈ [0, 1]
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Then since this is true for all n and the RHS sequence is monotone decreasing
in n with limit ε, then

lim
n→∞

sup
x∈[0,1]

∣∣∣fn(x)− f(x)
∣∣∣ ≤ ε

Note that the use of Markov’s inequality in the above step is required to free
the probability P

(
|Snn − x| ≥ δ

)
from dependence on x.

Theorem 1.21. (Skorohod’s representation theorem)

If Xn
d−→ X, then there are r.v.’s Yn and Y defined on some joint probability triple

with FXn = FYn and FX = FY for all n, such that Yn
a.s.−→ Y .

Proof. Let ([0, 1], B([0, 1]),m) be the uniform probability space where m is
the uniform probability measure (Lebesgue measure). Define the random
variables: Y and Yn : ([0, 1], B([0, 1]))→ R by

Y (y) = inf{x |FX(x) ≥ y}, Yn(y) = inf{x |FXn(x) ≥ y}

From Y and Yn, obtain the induced measures µY and µYn on (R, B(R)) by

µY (B) = m{y ∈ [0, 1] |Y (y) ∈ B}

µYn(B) = m{y ∈ [0, 1] |Yn(y) ∈ B}

µY and µYn are probability measures since m is a probability measure. To
show that FX = FY (the argument for FXn = FYn is exactly analogous), note:

FY (x) = µY ((−∞, x)) = m({y |Y (y) ≤ x})
= m({y | y ≤ FX(x)})
= FX(x)

The process to show that Yn
a.s.−→ Y is the following. Since we used the

probability integral transform to get corresponding random variables on the
uniform probability space, we show a.s. convergence on the uniform prob-
ability space. So we fix c ∈ [0, 1] and show that lim infn Yn(c) ≥ Y (c) and
lim supn Yn(c) ≤ Y (c)

First note that if Y is not continuous at c, then since there are only count-
ably many discontinuities, each discontinuity is a singleton with zero measure.
Therefore we can define Y (c) = Yn(c) = 0 to obtain a.s. convergence at that
point without affecting the distribution function.

So assume that Y is continuous at c.

1. lim infn Yn(c) ≥ Y (c)

Fix ε > 0. Since Y is continuous at c, we can find an α ∈ R such that
Y (c)− ε < α < Y (c). Thus FYn(α) < c by definition of Yn. Then since FYn →
FY , for large enough n we can find FYn(α) < c as well. By monotonicity, then
Y (c)− ε < α < Yn(c) for large enough n. Thus lim infn Yn(c) ≥ Y (c).

13



2. lim supn Yn(c) ≤ Y (c)

Fix ε > 0. Let d ∈ [0, 1] be such that c < d and Y is continuous at d. Then
there exists α such that Y (d) < α < Y (d) + ε. By definition of Y , we have
c < d ≤ FY (Y (d)) ≤ FY (α). Since FYn → FY , for large enough n we can
find c ≤ FYn(α) also. Thus by monotonicity, Yn(c) ≤ α ≤ Y (d) + ε for large
enough n. Thus lim supn Yn(c) ≤ Y (c).

1.5 Independence

Definition. (σ-field generated by a family of r.v.’s)

The σ-field generated by X1, . . . , Xn is the set

σ(X1, . . . , Xn) = σ

{
n⋃
i=1

σ(Xi)

}

Or, equivalently,

σ(X1, . . . , Xn) =
{
ω :
(
X1(ω), . . . , Xn(ω)

)
∈ A, A ∈ B(Rn)

}
Remark. σ(X1, . . . , Xn) is NOT the same as {∩ni=1X

−1
i (Bi), Bi ∈ B(R)}.

This is because B(Rn) = B(R)⊗ . . .⊗B(R) where:

B(R)⊗ . . .⊗B(R) = σ{(B1, . . . , Bn), Bi ∈ B(R)}

by the definition of product spaces and their associated sigma-algebras, so
B(Rn) is larger than the n-Cartesian product of B(R)’s.

Lemma 1.22. σ(X1, . . . , Xn) is precisely the set

σ
(
{∩ni=1X

−1
i (Bi), Bi ∈ B(R)}

)
Proof. Define the following sets:

S1 = ∪ni=1σ(Xi)

S2 = {∩ni=1X
−1
i (Bi), Bi ∈ B(R)}

We show that σ(S1) = σ(S2).

1. S2 ⊃ S1:

Let S be an arbitrary element of S1. Then S ∈ σ(Xk) for some k. Then
S = X−1

k (B) for some B ∈ B(R). Therefore S can be written as X−1
k (B) ∩

(∩i6=kX−1
i (R)) = X−1

k (B) ∩ Ω, so S ∈ S2.

2. S2 ⊂ σ(S1):

Note that S2 is precisely the set of all elements in S1 union all their countable
intersections. Since σ(S1) is a σ-field, then it includes all countable intersec-
tions of S1.
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Therefore since S2 is contained inside σ(S1), then σ(S2) ⊂ σ(S1). But since
S2 ⊃ S1, then σ(S2) ⊃ σ(S1). Therefore σ(S2) = σ(S1)

Corollary 1.23. σ(X1, . . . , Xn) is precisely the set: σ ({∩ni=1Ai, Ai ∈ σ(Xi)}).

Definition. (Independence of two objects)

1. Events: A,B are independent if P(A ∩B) = P(A) · P(B).

2. σ-fields: B1, B2 are independent σ-fields if (1) holds for all A ∈ B1, B ∈ B2.

3. Random variables: X,Y are independent random variables if (2) holds for
their corresponding generated σ-fields σ(X) and σ(Y ).

Remark. If two random variables are independent, then they are defined on
the same probability space.

Theorem 1.24. (Equivalent characterizations of independence)

Let X : Ω→ (S1,S1) and Y : Ω→ (S2,S2). TFAE:

1. X,Y are independent.

2. For all A ∈ S1 and B ∈ S2, P(X ∈ A, Y ∈ B) = P(X ∈ A) · P(Y ∈ B).

3. SupposeA1 ⊂ S1,A2 ⊂ S2 are π-classes which generate their corresponding σ-
fields. Then for all A ∈ A1, B ∈ A2, P(X ∈ A, Y ∈ B) = P(X ∈ A)·P(Y ∈ B).

4. For all bounded measurable functions h1 : S1 → R and h2 : S2 → R,
E[h1(X) · h2(Y )] = E[h1(X)] · E[h2(Y )].

Remark. Note that if X,Y are independent, then the last characterization (4)
holds if

E[h2
1(X)] <∞ and E[h2

2(Y )] <∞

Proof. We prove (1) ⇒ (2) ⇒ (3) and then (2) ⇐⇒ (4).

(1) implies (2):

Consider any A1 ∈ S1, A2 ∈ S2. Note that

P(X ∈ A1) = P({ω : X(ω) ∈ A1})
P(Y ∈ A2) = P({ω : Y (ω) ∈ A2})

P(X ∈ A1, Y ∈ A2) = P({ω : X(ω) ∈ A1} ∩ {ω : Y (ω) ∈ A2})

By assumption, X and Y are independent, so that σ(X) and σ(Y ) satisfy the
condition that

∀A1 ∈ σ(X), A2 ∈ σ(Y ), P(A1 ∩A2) = P(A1) · P(A2)

Changing notation and using the definition of σ(X) and σ(Y ), this is equiva-
lent to the statement that, for any B1 ∈ S1, B2 ∈ S2,

P({ω : X(ω) ∈ B1} ∩ {ω : Y (ω) ∈ B2})
= P({ω : X(ω) ∈ B1}) · P({ω : X(ω) ∈ B2})
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Letting B1 = A1 and B2 = A2 shows that

P(X ∈ A1, Y ∈ A2) = P(X ∈ A1) · P(Y ∈ A2)

(2) implies (3): Trivial.

(3) implies (2): By the π-λ theorem.

Define:

L1 = {A ∈ S1 |P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B) ∀B ∈ A2}

Note that L1 ⊃ A1. If we can show that L1 is a Λ-class, then since A1 is a
π-class, we will have shown that L1 ⊃ σ(A1), or that L1 ⊃ S1. Since L1 ⊂ S1,
then we will have shown that L1 = S1.

To show that L1 is a Λ-class:

1. L1 contains the whole space S:

Note that P(X ∈ S) = P(X−1(S)) = P(Ω) = 1. Therefore since X,Y are
defined on the same space, then P(X ∈ S, Y ∈ B) = P(Ω∩ Y −1(B)) = P(Y ∈
B).

2. L1 is closed under proper differences:

Let A1, A2 ∈ L1 such that A1 ⊃ A2. Note that A1 \ A2 ∈ S1 since S1 is a
σ-field. Note:

P(X ∈ (A1 \A2), Y ∈ B) = P([X−1(A1) \X−1(A2)] ∩ Y −1(B))

= P([X−1(A1) ∩ Y −1(B)] \ [X−1(A2) ∩ Y −1(B)])

= P([X−1(A1) ∩ Y −1(B)])− P([X−1(A2) ∩ Y −1(B)])

= P(A1)P(B)− P(A2)P(B)

= P(A1 \A2) · P(B)

Where in the above steps we have used the facts that X,Y are measurable
functions defined on the same space Ω, and that P is a measure on a σ-field.

3. L1 is closed under monotone increasing limit

Let {An}∞n=1 be an increasing sequence in L1. Since S1 is a σ-field, then
∪∞n=1An ∈ S1 and also we can re-write ∪∞n=1An as a disjoint union ∪∞n=1Gn ∈
S1 where

Gn = An \ ∪ni=1Gn−1, G1 = A1
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Then note:

P(X ∈ ∪∞An, Y ∈ B) = P(X ∈ ∪∞Gn, Y ∈ B)

= P(X−1(∪∞Gn) ∩ Y −1(B))

= P(∪∞[X−1(Gn) ∩ Y −1(B)])

=

∞∑
n=1

P(X−1(Gn) ∩ Y −1(B))

=

∞∑
n=1

P(X ∈ Gn) · P(Y ∈ B)

= P(X ∈ ∪∞Gn) · P(Y ∈ B)

= P(X ∈ ∪∞An) · P(Y ∈ B)

Where in going from the fourth to the fifth line we have used the fact that
L1 is closed under proper differences, and the sequence {Gn} is a sequence of
proper differences of sets in L1.

Thus we have shown that L1 is a Λ-class and that, therefore,  L1 = S1. Next,
define:

L2 = {B ∈ S2 |P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B) ∀A ∈ S1}

Note that, by the result shown at the top, L2 ⊃ A2. By a similar proof to the
one above, it can be shown that L2 is a Λ-class. Then since A2 is a π-class,
L2 ⊃ σ(A2), or that L2 ⊃ S2. Since L2 ⊃ S2, then L2 = S2, as desired.

(4) implies (2)

Fix A ∈ S1 and B ∈ S2, and let h1(X) = 1A(X), h2(Y ) = 1B(Y ).

(2) implies (4)

Independence of X and Y implies that (4) holds at least for indicator functions
h1 = 1A and h2 = 1B . This can be extended to simple functions, and then
to bounded measurable functions using approximation by simple functions.

Definition. (Pairwise independence)

Let B1, . . . , B2 be σ-fields such that, for all i 6= j, Bi and Bj are independent. Then
we say {Bi}1≤i≤n is pairwise independent.

Definition. (Independence of countable collections)

Three characterizations:

1. Suppose B1, . . . , Bn ⊂ F are σ-fields. Then {Bi}1≤i≤n is independent if,
for any A1 ∈ B1, . . . , An ∈ Bn,

P(∩nAi) =

n∏
P(Ai)
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2. Suppose A1, . . . ,An are arbitrary subcollections of F . We say A1, . . . ,An are
independent if, for any I ⊂ {1, 2, . . . , n} and i ∈ I, Ai ∈ Ai,

P(∩i∈IAi) =
∏
i∈I

P(Ai)

3. Suppose A1, . . . ,An are arbitrary subcollections of F . Define Ai = {Ω, A ∈
Ai}. Then A1, . . . ,An are independent if, for all Ai ∈ Ai,

P(∩ni=1Ai) =

n∏
i=1

P(Ai)

Remark. What is exactly the difference between the second and third char-
acterization? In the second, we do not force the intersection to be over all n
in each I. In the third characterization, we always force the intersection to
be over all n. But since we can always set Aj = Ω for any j = 1, . . . , n in the
third characterization, then the two characterizations are equivalent.

Definition. (Independence of arbitrary collections)

Suppose {Bα : α ∈ J} where Bα ⊂ F and J is an arbitrary index set. We say that
the Bα’s are independent if any subcollection is independent.

That is, for n ≥ 2 and α1 6= α2 6= . . . 6= αn ∈ J , {Bαi}1≤i≤n are independent.

Theorem 1.25. Suppose {Bi}1≤i≤n are sub-σ-fields of F and Ai ⊂ Bi where Ai
is a π-class that generates Bi.

If the {Ai}1≤i≤n are independent, then the {Bi}1≤i≤n are independent.

Theorem 1.26. If X1, . . . , Xn are independent, then X1, . . . , Xj is independent of
Xj+1, . . . , Xn for 1 < j < n.

Proof. By a previous result,

σ(X1, . . . , Xn) = σ
(
{∩ni=1X

−1
i (Bi), Bi ∈ B(R)}

)
Note that {∩ni=1X

−1
i (Bi), Bi ∈ B(R)} is a π-class that generates σ(X1, . . . , Xn)

and apply the setup to X1, . . . , Xj and Xj+1, . . . , Xn.

18



2 Zero-one laws and stopping times

2.1 Borel-Cantelli lemmas

Definition. (lim sup and lim inf of a sequence)

Let An be a sequence of subsets of Ω. Then

1. lim supAn = limm→∞ ∪∞n=mAn = {ω that are in infinitely many An}

2. lim inf An = limm→∞ ∩∞n=mAn = {ω that are in all but finitely many An}

Remark. Why are these sets given the name ”lim sup” and ”lim inf”? Because:

lim sup
n→∞

1An = 1lim supAn and lim inf
n→∞

1An = 1lim inf An

Definition. (Infinitely often)

Let An be a sequence of subsets of Ω. Then lim supAn = {ω : ω ∈ An i.o.}, where
i.o. stands for infinitely often.

Lemma 2.1. (Very weak lemmas)

1. P(An i.o.) ≥ lim supn→∞ P(An)

2. P(An occurs ultimately) ≤ lim infn→∞ P(An)

Proof. We prove the first. The proof for the second is analogous.

Define Bn = ∪∞n=mAn. Note that this is a decreasing sequence with limit
An i.o..

Lemma 2.2. (Borel-Cantelli 1)

Let An be a sequence of elements of F . If
∑∞
n=1 P(An) <∞, then P(An i.o.) = 0.

Proof. By definition of lim sup, we have that lim supAn ⊂ ∪∞m=nAm. There-
fore:

P(lim supAn) ≤ P(∪∞m=nAm)

≤
∞∑
m=n

P(Am) for any n

Since
∑∞
n=1 P(An) <∞, its sequence of partial sums

∑n
m=1 P(Am) converges.

Therefore
∑∞
m=n P(Am)→ 0 as n→∞.

Lemma 2.3. (Borel-Cantelli 2)

Let An be an independent sequence of elements of F . If
∑∞
n=1 P(An) = ∞, then

P(An i.o.) = 1.
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Proof. Let M < N <∞. By independence and the identity 1− x ≤ e−x, we
have:

P(∩Nn=MA
c
n) =

N∏
n=M

(1− P(An))

≤
N∏

n=M

exp(−P(An))

= exp

(
−

N∑
n=M

P(An)

)
→ 0 as N →∞

Therefore since P(∩∞n=MA
c
n) = 0, then P(∪∞n=MAn) = 1. Since this holds for

arbitraryM and ∪∞n=MAn decreases (in M) to lim supAn, then P(lim supAn) =
1 also.

Remark. If {An} is an independent sequence, then applying the contrapositive
of Borel-Cantelli 2 shows that the converse of Borel-Cantelli 1 holds.

To see that it does not hold in general, let the measure space be given by
([0, 1], B([0, 1]),m) where m is Lebesgue measure. Consider the sequence of
events An = [0, 1/n] for n = 1, 2, . . ..

How can we use the Borel-Cantelli lemmas to show convergence a.s.?

Lemma 2.4. Xn
a.s.−→ X if and only if for every ε > 0,

1. limm→∞ P(|Xn −X| ≤ ε for all n ≥ m) = 1

2. limm→∞ P(|Xn −X| > ε for some n ≥ m) = 0

Proof. We show each direction separately.

(⇒)

Suppose that Xn
a.s.−→ X. Fix ε > 0. Define Ω0 = {ω : Xn(ω) → X(ω)}. By

assumption, for every ω0 ∈ Ω0 there exists N(ω0, ε) ∈ N such that

n ≥ N(ω0, ε) ⇒ |Xn(ω0)−X(ω0)| ≤ ε

Thus for any such ω0 ∈ Ω0, there exists some corresponding N(ω0, ε) such
that ω0 ∈ ∩∞n=N(ω0,ε)

{ω : |Xn(ω)−X(ω)| ≤ ε}. Therefore,

Ω0 = ∪∞N=1 ∩∞n=N {ω : |Xn(ω)−X(ω)| ≤ ε}

The union is over a sequence of sets increasing to Ω0 which has probability 1,
so by continuity the union has probability 1. And finally note:

∪∞N=1 ∩∞n=N {|Xn −X| ≤ ε} = lim
N→∞

∩∞n=N {|Xn −X| ≤ ε}

(⇐)
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Define A(ε) = ∪∞N=1 ∩∞n=N {|Xn −X| ≤ ε}.

By assumption, this set has probability 1 for all ε > 0. For any ω ∈ A(ε),
there exists some N(ω, ε) such that n ≥ N(ω, ε) ⇒ |Xn(ω)−X(ω)| ≤ ε.

To show Xn → X at some point ω0 with P(ω0) > 0, we only need to show
that we can select an increasing sequence of such N ’s corresponding to ε ↓ 0,
e.g. ε = 1/n:

N(ω0, 1), N(ω0, 1/2), N(ω0, 1/3), . . .

We can do this only for ω0 ∈ ∩∞n=1A(1/n). But since P(A(ε)) = 1 for all ε > 0,
then ∩∞n=1A(1/n) must also have probability 1 and we are done.

Lemma 2.5. Xn
a.s.−→ X if and only if for all ε > 0, P(|Xn −X| > ε i.o.) = 0.

Proof. Note that:

{|Xn −X| > ε i.o.} =

∞⋂
m=1

∞⋃
n=m

{|Xn −X| > ε}

And use the second iff condition in the previous lemma.

Theorem 2.6. Suppose X1, . . . , Xn
iid∼ exp(1). So we have P(Xi ≤ xi) = 1 − e−x

and f(x) = e−x for x ≥ 0. Then:

1. Xn
logn

P−→ 0

2. lim supn→∞
Xn

logn

a.s.−→ 1

3. Let Mn = max{X1, . . . , Xn}. Then Mn

logn

a.s.−→ 1

Proof. In order.

Proof of (1)

Note simply that:

P
(∣∣∣∣ Xn

log n
− 0

∣∣∣∣ > ε

)
= P(Xn > ε log n)

= exp(−ε log n)

=
1

nε

Proof of (2)

We show lim supn→∞
Xn

logn ≤ 1 and lim supn→∞
Xn

logn ≥ 1. This is equivalent
to showing that, for any ε > 0,

P
(
Xn

log n
≥ 1 + ε i.o.

)
= 0 and P

(
Xn

log n
≥ 1− ε i.o.

)
= 1
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To show the first, observe that:

P(Xn ≥ (1 + ε) log n) =
1

n1+ε

which is summable, so the result follows from Borel-Cantelli 1. To show the
second, note that

P(Xn ≥ (1 + ε) log n) =
1

n1−ε

is not summable, so the result follows from Borel-Cantelli 2.

Proof of (3)

We show the result by showing that lim inf Mn

logn ≥ 1 and lim sup Mn

logn ≤ 1.

For the first, we show P
(
Mn

logn ≤ 1− ε i.o.
)

= 0:

P
(
Mn

log n
≤ 1− ε

)
= P

(
X1

log n
≤ 1− ε

)n
=
(

1− e−(1−ε) logn
)n

=

(
1− 1

n1−ε

)n
≤
(
e−

1

n1−ε

)
= e−n

ε

Which is summable, so the result follows by Borel-Cantelli 1.

The second follows immediately from a deterministic fact:

Let {xn}n≥1, xn ≥ 1 be a sequence of real numbers. Suppose {bn}n≥1 is
another sequence which increases to ∞. Then

lim sup
n→∞

xn
bn

= α ⇒ lim sup
n→∞

mn

bn
= α

where mn = max{x1, x2, . . .}.

To prove this, fix j ≥ 1 and note that, since bn ↑ ∞,

lim sup
n→∞

{
max{x1, . . . , xn}

bn

}
= lim sup

n→∞

{
max{xj , xj+1, . . . , xn}

bn

}
≤ lim sup

n→∞

{
max

[
xk
bk

: j ≤ k ≤ n
]}

≤ sup
k≥j

{
xk
bk

}
Letting j →∞, we have

lim sup
n→∞

{
max{x1, . . . , xn}

bn

}
≤ lim
j→∞

sup
k≥j

{
xk
bk

}
= lim sup

n→∞

{
xn
bn

}
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Observing that lim sup mn
bn
≥ lim sup xn

bn
completes the proof.

Remark. The point of this whole example is to show that convergence in prob-
ability does not necessarily imply convergence a.s.

Lemma 2.7. Let {Xn}∞n=1 be a sequence of measurable functions (random vari-

ables). If, for any ε > 0, P(|Xn −X| > ε i.o.) = 0, then Xn
P−→ X.

Proof. Note that P(|Xn −X| > ε i.o.) = P(lim sup |Xn −X| > ε).

Also note {lim |Xn −X| > ε} ⊂ {lim sup |Xn −X| > ε} for any n, so

limP(|Xn −X| > ε) ≤ P(lim sup |Xn −X| > ε)

Theorem 2.8. Xn
P−→ X if and only if for every subsequence {Xnj}j≥1 there is a

further subsequence {Xnjk
}k≥1 that converges a.s. to X.

To prove this theorem, we first prove a deterministic lemma:

Lemma 2.9. Let yn be a sequence of elements of a topological space. If every
subsequence ynm has a further subsequence ynmk that converges to y, then yn
converges to y also.

Proof. Assume, on the contrary, that yn 9 y. Then there exists

1. an open set I containing the limit y and

2. a subsequence ynm such that ynm /∈ G for all m.

but then obviously no subsequence of ynm can converge to y, a contradiction.

We now prove the main result.

Proof. The proof is a simple application of the first Borel-Cantelli lemma.

(⇒)

Assume Xn
P−→ X. Fix a subsequence {Xnj}j≥1. Clearly Xnj

P−→ X as well,
so that for any ε > 0,

P(|Xnj −X| ≥ ε)→ 0 as j →∞

Let {εk}k≥1 be a positive sequence which ↓ 0. Since the above holds for any
ε > 0, then we can sequentially find a subsequence njk ≥ njk−1

≥ . . . such
that

P(|Xnjk
−X| ≥ εk) ≤ 1

2k
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Therefore we have

∞∑
P(|Xnjk

−X| ≥ εk) ≤
∞∑ 1

2k
<∞

Thus by the first Borel-Cantelli lemma, P(|Xnjk
− X| > εk i.o.) = 0 and

therefore Xnkj

a.s.−→ X.

(⇐)

Assume that, for every subsequence {Xnj}j≥1 there exists a further subse-

quence {Xnjk
}k≥1 such that Xnjk

a.s.−→ X as k →∞.

Fix ε > 0. Define yn = P(|Xn − X| > ε). By assumption and the fact that
convergence a.s. implies convergence in probability, there exists a further
subsequence (of some intermediate subsequence) {Xnjk

}k≥1 such that

ynjk = P(|Xnjk
−X| > ε)→ 0 as k →∞

Since every further subsequence (of some intermediate subsequence) is con-
vergent to 0, then by our deterministic lemma, yn itself is convergent to 0.

Thus Xn
P−→ X.

Theorem 2.10. (Dominated convergence theorem)

If Xn
P−→ X and |Xn| ≤ Y with E(Y ) <∞, then

1. EXi → EX

2. E(|Xn −X|)→ 0

Proof. SupposeXn
P−→ X. Given any subsequence {nj}, there exists a further

subsequence {njk} such that Xnjk

a.s.−→ X. By DCT, then we have

EXnjk
→ EX

Define the sequence of real numbers {yn} by yn = EXn. Since, given any
subsequence {ynj}j≥1, there exists a further subsequence {ynjk }k≥1 that con-
verges to EX, then by our previous deterministic lemma we have

yn = EXn → EX

Remark. Note that this result only requires convergence in probability, not
convergence a.s. as is normally required in the statement of DCT.

Theorem 2.11. (Miscellaneous note)

Let {Xn}n≥0 be a sequence of random variables. Then:

∞⋃
L=1

{Xn > −L ∀n} = {inf Xn > −∞}
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Proof. If some ω is in the LHS, then it is in {Xn > −L0 ∀n} for some L0 ∈ N.
Thus the sequence {Xn(ω)} is bounded below at that value and so is in the
RHS.

The exact opposite argument works to showing that some ω in the RHS is
also in the LHS.

2.2 Filtrations and stopping times

Consider an infinite sequence of random variables X1, X2, . . . defined on a common
probability space (Ω,F ,P). The σ-field generated by the first n random variables
is:

Fn = {B = {ω : X1(ω), . . . , Xn(ω) ∈ A}, A ∈ B(Rn)}

This is a σ-field since the Xi’s are measurable and all intersections and unions
between elements in each induced σ field are included. Since sets of those form
generate the Borel σ-field on R and all Xi’s are measurable, we can also write:

Fn = σ{{ω : X1(ω) ≤ x1, . . . , Xn(ω) ≤ xn}, x1, . . . , xn ∈ R}

From the first formulation, it is easy to see that if we take A = A1 × R and
A1 ∈ B(Rn−1), then

Fn−1 ⊂ Fn

Definition. (Filtration)

A collection of sub-σ-fields {Fn}n≥1 is a filtration if it satisfies

F1 ⊂ F2 ⊂ F3 ⊂ . . .

Remark. In general, we want to think of these sub-σ-fields as partial information.
A σ-algebra defines the set of events that can be measured. Therefore a fil-
tration is often used to represent the change in the set of events that can be
measured, through gain or loss of information.

Another interpretation of a filtration involves times. Under a filtration, we
can view the set of events in Ft as the set of ”questions that can be answered
at time t,” which naturally carries the ascending/descending structure of the
filtration.

Lemma 2.12. Fix n ≥ 1. Under the usual filtration, a random variable Y is
Fn-measurable if and only if:

Y = g(X1, . . . , Xn)

where g : Rn → R is a deterministic measurable function.

Proof. (Sketch) Consider an arbitrary Fn-measurable indicator function 1B(ω).
By definition, it looks like:

1B(ω) = 1A(X1(ω), . . . , Xn(ω)) = g(X1, . . . , Xn), A ∈ B(Rn)
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Therefore simple functions also have this general form, and thus general mea-
surable functions also have this form.

Definition. (Stopping time)

A random variable τ : Ω→ {1, 2, . . .} ∪ {∞} is a stopping time with respect to
the filtration {Fn}n≥1 if, for any n,

{ω : τ(ω) = n} ∈ Fn ∀n

Corollary 2.13. The above condition is equivalent to the condition:

{ω : τ(ω) ≤ n} ∈ Fn ∀n

Proof. Fix n ≥ 1.

Assume the first definition. We have that: {τ ≤ n} = ∪ni=1{τ = i}. The RHS
is a union of events which are all individually ∈ Fn since the probability space
is filtered. Thus the entire RHS ∈ Fn.

Assume the second definition. Then the event {τ ≤ n− 1} ∈ Fn−1 and thus
is also ∈ Fn since the probability space is filtered. Since Fn is closed under
set difference, then

{τ = n} = {τ ≤ n} \ {τ ≤ n− 1} ∈ Fn

Corollary 2.14. {T =∞} ∈ F∞ where F∞ is defined by F∞ = σ(∪∞Fn).

Proof. Trivial.

Example. (Hitting time)

Let a filtration be given by Fn = σ(X1, . . . , Xn). The hitting time of (0,∞) defined
below is a stopping time:

τ = inf{n ≥ 1 : Xn > 0}

To see this, fix n ≥ 1 and note that {τ = n} = ∩n−1
j=1 {Xj ≤ 0} ∩ {Xn > 0}.

Example. The following is not a stopping time:

τ = sup{n ≥ 1 : Xn > 0}

To see this, fix n ≥ 1 and note that {τ = n} = {Xn > 0} ∩
{
∩∞j=n+1{Xj ≤ 0}

}
.

Example. (Warning)

Even the most innocuous finite a.s. stopping time can have a surprisingly infinite
expected value. Consider a symmetric simple random walk {Xn} with Sn =

∑n
Xi.

Let T = inf{n ≥ 0 : Sn = 1}, i.e. the hitting time to 1. We show that ET =∞.
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Since Xn is symmetric, with probability 1
2 we have T = 1. Also with probability

1
2 , we have T = 1 + T ′ + T ′′ where T ′, T ′′ are iid copies of T . To see why this is,
if S1 = −1, then to get back up to +1 we need to first return to 0 which takes
T ′ steps, and then return to +1 which takes T ′′ steps. Since stopping times are
non-negative, we can take expectations and use linearity regardless of finiteness:

ET =
1

2
· 1 +

1

2
· (1 + ET ′ + ET ′′)

Using ET = ET ′ = ET ′′, we obtain that ET must satisfy ET = 1 + ET , which has
a unique solution =∞.

Theorem 2.15. (Wald’s lemma)

Let X1, X2, . . . be iid with E(|Xi|) < ∞ and E(Xi) = µ. Let τ be a stopping time
with respect to the filtration Fn = σ(X1, . . . , Xn) such that E(τ) <∞. Define the
random sum: Sτ =

∑τ
i=1Xi. Then:

ESτ = E(τ) · E(X1)

Proof. Observe that:

Sτ =

∞∑
i=1

Xi · 1i≤τ

Consider {i ≤ τ} for fixed i. Because {i ≤ τ} = {τ ≤ i − 1}c and τ is a
stopping time,

{τ ≤ i− 1} ∈ Fi−1 ⇒ {i ≤ τ} ∈ Fi−1

The Xi’s are independent, so Xi is independent of Fi−1. In particular, Xi

and 1i≤τ are independent. Therefore:

E

[ ∞∑
i=1

|Xi| · 1i≤τ

]
=

∞∑
i=1

E [|Xi| · 1i≤τ ] (by MCT)

=

∞∑
i=1

E|Xi| · P(i ≤ τ)

= E|X1| ·
∞∑
i=1

P(i ≤ τ)

= E|X1| · E(τ) <∞

Noting that
∑∞
i=1Xi ·1i≤τ is dominated by

∑∞
i=1 |Xi| ·1i≤τ , we can now show

the full result by dominated convergence:

E

[ ∞∑
i=1

Xi · 1i≤τ

]
=

∞∑
i=1

E [Xi · 1i≤τ ] (by DCT)

=

∞∑
i=1

EXi · P(i ≤ τ)

= EX1 · E(τ) <∞
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Example. (Usage of Wald’s lemma)

Suppose Xi are iid with

Xi =

{
+1, p = 1/2

−1, p = 1/2

Let τ = inf{n : Sn = 30 or − 10}. Is this a stopping time?

It is easily checked that E(τ) <∞. Now note that ESτ = 0 since EXi = 0 (to show
this more rigorously, use the stopped process Sτ∧n and apply DCT). Therefore:

0 = 30 · P(Sτ = 30) + (−10) · (1− P(Sτ = −10)

And solving gives us that P(Sτ = 30) = 1/4.

2.3 Kolmogorov zero-one law

Definition. (Tail-after-time-n σ-field)

Let X1, X2, . . . be random variables. Define Fn = σ(X1, . . . , Xn) as usual. Then:

1. The σ-field generated by X1, X2, . . . is:

F∞ = σ
(
∪∞j=1σ(X1, . . . , Xj)

)
2. The tail-after-time-n σ-field is:

Ln = σ(Xn+1, Xn+2, . . .) = σ
(
∪∞j=1 σ(Xn+1, . . . , Xn+j)

)
Definition. (Tail σ-field)

Observe that Ln defined above is a decreasing sequence in n. We call the limit the
tail σ-field of X1, X2, . . .:

T = ∩∞n=0Ln = ∩∞n=1σ(Xn, Xn+1, . . .)

Example. The event {lim supXn ≥ 2} ∈ T .

To see this, define the set

Aq = {ω : Xn(ω) ≥ 2− 1/q i.o.}

An intuitive interpretation of Aq is as the set where Xn goes above and stays above
2 − 1/q. Now note that {lim supXn ≥ 2} = ∩∞q=1Aq. Therefore to show that the
limsup is in the tail field, it is sufficient to show that Aq ∈ T for all q.

Note that Aq can be written: ∩∞m=1 ∪n≥m {Xn ≥ 2− 1/q}. Fix some k ≥ 1. Then:

Aq = ∩∞m=k ∪n≥m {Xn ≥ 2− 1/q}

as well. Thus for any k ≥ 1, Aq belongs to Lk.
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Example. The event {limSn <∞} ∈ T .

Apply the Cauchy criterion of convergence.

Example. The event {ω : lim supSn > 2} /∈ T .

i.e. this event ”depends” on the first few r.v.’s.

To see this, let X1 = 3, X2 = −3, X3 = 3, X4 = −3, . . . Then Sn alternates between
0 and 3 and so lim supSn = 3 > 2 which is OK.

However, if we change X1 = −10 and leave the rest of the sequence alone, then
lim supSn = −10 < 2.

Theorem 2.16. (Kolmogorov zero-one law)

Suppose X1, X2, . . . are independent. Let A ∈ T , the tail field of X1, X2, . . .. Then
either P(A) = 0 or P(A) = 1.

Remark. A more elegant proof than the one presented below can be found in
the section on martingale convergence theorems.

Lemma 2.17. With the setup of the Kolmogorov zero-one law, fix n ≥ 1. Then
σ(X1, . . . , Xn) and Ln are independent.

Proof. The definition of Ln is:

Ln = σ
(
∪∞j=1σ(Xn+1, . . . , Xnj )

)
Note that ∪∞j=1σ(Xn+1, . . . , Xn+j) is a π-class which generates Ln. Therefore,
we only need to show that P(A1 ∩A2) = P(A1) · P(A2) for

A1 ∈ σ(X1, . . . , Xn) and A2 ∈ ∪∞j=1σ(Xn+1, . . . , Xn+j)

By this definition, then A2 ∈ σ(Xn+1, . . . , Xn+k) for some k ≥ 1.

Lemma 2.18. σ(X1, X2, . . .) is independent of T .

Proof. Write σ(X1, X2, . . .) = σ(∪∞j=1σ(X1, . . . , Xj)). By the π-class argu-
ment, we only need to show independence of:

A1 ∈ ∪∞j=1σ(X1, . . . , Xj) and A2 ∈ T

Observe that A1 ∈ σ(X1, . . . , Xk) for some k ≥ 1. Also, by definition of T ,
A2 ∈ σ(Xk+1, . . .) for the same k. Invoke the previous lemma.

Proof. (of Kolmogorov zero-one law)

Fix A ∈ T . Since σ(X1, X2, . . .) ⊃ Ln for all n, then σ(X1, X2, . . .) ⊃
∩∞n=1Ln = T . Since A ∈ σ(X1, X2, . . .) and A ∈ T also, then A is inde-
pendent of A by the previous lemma.
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3 Laws of Large Numbers

3.1 4th moment/L2 strong laws, Glivenko-Cantelli

Theorem 3.1. (4th moment strong law)

Let {Xi}i≥1 be iid with EXi = µ and E(X4
i ) <∞. Then Sn

n

a.s.−→ µ.

Lemma 3.2. If EXi = 0, then E(S4
n) ≤ 3n2E(X4

i ).

Proof. Note that:

E(S4
n) = E

[(∑
Xi

)4
]

=
∑
i,j,k,l

E(XiXjXkXl)

Note that the RHS expression is zero if there is at least one index which does
not equal one of the others. For example, E(X1, X

2
2 , X3) = 0. Therefore,

E(S4
n) =

n∑
E(X4

i ) +

(
4

2

)∑
i 6=j

E(X2
iX

2
j )

= nE(X4
i ) + 3n(n− 1)E(X2

1X
2
2 )

≤ nE(X4
1 ) + 3n(n− 1)E(X4

1 )

Where the last step follows from the Cauchy-Schwarz inequality.

Proof. (of 4th moment strong law)

Let EXi = 0. We show that Sn
n

a.s.−→ 0 or, equivalently, P(|Snn | > ε i.o.) = 0.
Note:

P
(∣∣∣∣Snn

∣∣∣∣ > ε

)
≤

E
([

Sn
n

]4)
ε4

≤ 3E(X4
1 )

n2ε4

Which is summable, so we can invoke Borel-Cantelli to obtain the result.

Lemma 3.3. Suppose {An}n≥1 is an independent sequence of events with P(An) =

p for all n ≥ 1. Then 1
n

∑
1Ai

a.s.−→ p.

Proof. Let Xn(ω) = 1An(ω). Check assumptions and apply the 4th moment
strong law.

Theorem 3.4. (L2 strong law)

Let {Xi}i≥1 be a sequence of random variables such that

1. EXi = 0 ∀i
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2. EX2
i ≤ c ∀i

3. E(XiXj) = 0 ∀i 6= j

Then
∑n

Xi/n = Sn/n
a.s.−→ 0.

Lemma 3.5. Let {Sn}n≥1 be a sequence in R. If:

1. there exists a subsequence {n(j)}j≥1 with n(j) ↑ ∞ such that
Sn(j)

n(j) → 0

2. for dj = maxn(j)≤n≤n(j+1) |Sn − Sn(j)| we have
dj
n(j) → 0 as j →∞

Then Sn/n→ 0

Proof. Fix an n(j) ≤ n.

|Sn|
n

=
|Sn − Sn(j) + Sn(j)|

n

≤
|Sn(j)|+ |Sn − Sn(j)|

n

≤
|Sn(j)|
n(j)

+
dj
n(j)

→ 0 as j →∞

Proof. (of main result) Fix n(j) = j2, j ≥ 1. We proceed in two steps:

Step 1: show that
Sn(j)

n(j)
=
Sj2

j2

a.s.−→ 0

This follows immediately from Borel-Cantelli. Note that

P[|Sj2 | > εj2] ≤
Var(Sj2)

j4ε2
≤ cj2

j4ε2
=

c

j2ε2

which is summable over j.

Step 2: show that

Dj2

j2

a.s.−→ 0, where Dj2 = max
j2≤n≤(j+1)2

∣∣Sn − Sj2∣∣
We show this again by Borel-Cantelli. First observe that, by assumption,
E(Sn − Si) = 0 for all 0 ≤ i ≤ n. Also, note E[(Sn − Si)2] = Var(

∑n
i+1Xi) ≤

c(n− i).

Second, observe that

D2
j2 = max

j2≤n≤(j+1)2

∣∣Sn − Sj2∣∣2 ≤ (j+1)2∑
n=j2

∣∣Sn − Sj2∣∣2
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Therefore we have

P(Dj2 > εj2) ≤
E[(Dj2)2]

ε2j4

≤
E
[∑(j+1)2

n=j2

∣∣Sn − Sj2 ∣∣2]
ε2j4

≤
∑(j+1)2

n=j2 c(n− j2)

ε2j4

=
c
∑2j+1
k=1 k

ε2
j4 =

c(2j + 1)(2j + 2)

2ε2j4

P(Dj2 > εj2) ≤ c′

ε2
j2

which is summable, so
Dj2

j2
a.s.−→ 0.

Finally, observe that the two conditions for Lemma 3.5 are satisfied. Since
the two conditions hold a.s., then the convergence result of the lemma is also
a.s.

Theorem 3.6. (Glivenko-Cantelli theorem)

Suppose {Xi}i≥1 is an iid sequence. Define the empirical distribution function as

Gn(ω, x) =
1

n

n∑
1Xi(ω)≤x, x ∈ R

Define F as the distribution function of Xi, i.e.

F (x) = P(X1 ≤ x), x ∈ R

Then |Gn(ω, x)− F (x)| a.s.−→ 0 for any fixed x and

sup
x∈R

∣∣Gn(ω, x)− F (x)
∣∣ a.s.−→ 0

Remark. Note that the first (weaker) result is akin to pointwise convergence
of the distribution functions, and follows immediately from the strong law
because indicator functions have finite moments. The second result gives
uniform convergence of the distribution functions and is much stronger.

Lemma 3.7. (Deterministic)

Suppose {Fn}n≥1 and F are distribution functions. If

1. For all x ∈ Q, Fn(x)→ F (x)

2. For all atoms x of F , Fn(x)→ F (x) and Fn(x−)→ F (x−)

Then supx∈R|Fn(x)− F (x)| → 0.

Proof. (Exercise)
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Lemma 3.8. Any probability measure µ on R has only countably many atoms.

Proof. Let A be the set of atoms of µ. Consider any x ∈ A. By the definition
of atom, F (x−) < F (x+), so we can pick a rational qx such that F (x−) <
qx < F (x+).

Then, since µ is non-decreasing, then for y 6= z ∈ A we must have qy 6= qz.
Otherwise one of the points is not an atom. Therefore the mapping from
A → Q is one-to-one and therefore |A| = |Q|.

Proof. (of main result) Fix x ∈ R and define:

An = {Xn ≤ x} = {ω : Xn(ω) ≤ x}

This sequence {An} satisfies the conditions of Lemma 3.3, so we immediately
obtain the first result:

1

n

n∑
1Ai = Gn(ω, x)

a.s.−→ F (x)

To show the second result, we show that Gn and F satisfy the two conditions
of Lemma 3.7.

1. First, note that if we redefine the sequence {An} to be Xn strictly less than
X, then we immediately obtain

1

n

n∑
1Ai = Gn(ω, x−)

a.s.−→ F (x−)

Also, since we know Gn(ω, x)
a.s.−→ F (x) for all x ∈ R, then it also holds for all

q ∈ Q. Therefore if we define

Bq = {ω : Gn(ω, q)→ F (q)}

then P(Bq) = 1.

2. Now let A denote the set of all atoms of F . For any x ∈ A, x ∈ R also and
we have already shown that Gn(ω, x)

a.s.−→ F (x) and Gn(ω, x−)
a.s.−→ F (x−) for

all x ∈ R. Therefore if we define

Cx = {ω : Gn(ω, x)→ F (x), Gn(ω, x−)→ F (x−)}

then P(Cx) = 1.

Now note, by definition of Bq and Cx above,

{ω : sup
x∈R
|Gn(ω, x)− F (x)| → 0} ⊃

⋂
q∈R

Bq ∩
⋂
x∈A

Cx

The result follows by observing that {An}n≥1 and P(An) = 1 ∀n, then
P(∩∞An) = 1.
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3.2 2nd moment results

Theorem 3.9. (Kolmogorov’s maximal inequality)

Let {Xi} be a sequence of independent r.v.’s with EXi = 0 and E(X2
i ) < ∞ ∀i.

Define

Sn =

n∑
Xi and S∗n = max

1≤k≤n
|Sk|

Then

P(S∗n ≥ x) ≤ E(S2
n)

x2

Remark. Note the similarity to the Chebyshev’s inequality bound on Sn:

P(|Sn| ≥ x) ≤ E(S2
n)

x2

Proof. Fix k. Define the random variable

Ak = {|Si| < x and |Sk| ≥ x for 1 ≤ i ≤ k − 1}

In other words, Ak is the event that the first crossing of partial sums over
x occurs at the kth step. Observe that the Ak’s are disjoint and also that:
{S∗n > x} = ∪nk=1Ak.

Furthermore, note that the joint event (Ak, Sk) is independent of the event
Sn − Sk =

∑n
k+1Xi since the former deals only with partial sums up to k

while the latter deals with sums of Xi’s from k+ 1 onwards, and the Xi’s are
independent.

E(S2
n) =

∫
∪nk=1Ak

S2
n dP

=

n∑
k=1

∫
Ak

S2
n dP

=

n∑
k=1

∫
Ak

(Sn − Sk + Sk)2 dP

=

n∑
k=1

∫
Ak

(Sn − Sk)2 + S2
k + 2Sk(Sn − Sk) dP

=

n∑
k=1

∫
Ak

(Sn − Sk)2 dP +

n∑
k=1

∫
Ak

S2
k dP

+

n∑
k=1

2E[Sk(Sn − Sk)1Ak ]

≥
n∑
k=1

∫
Ak

S2
k dP +

n∑
k=1

2E[Sk(Sn − Sk)1Ak ]

=

n∑
k=1

∫
Ak

S2
k dP (by independence of Sk, (Sn − Sk))
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Note that, by definition of Ak, Sk ≥ x in the the last step, so the integrand is
bounded below by x2 and we have:

E(S2
n) ≥

n∑
k=1

∫
x2
1Ak dP = x2

n∑
k=1

P(Ak)

By disjointness and definition of the Ak’s, we then have

E(S2
n) ≥ x2 · P(∪nk=1Ak) = x2 · P(S∗n > x)

Theorem 3.10. (Cauchy criterion)

A series
∑∞
n=1 an in a complete metric space M converges iff for every ε > 0 there

exists N ∈ N such that for any n > k > N ,∣∣∣ n∑
j=k

aj

∣∣∣ < ε

Or, equivalently, that

sup
n≥k

∣∣∣ n∑
j=k

aj

∣∣∣→ 0 as k →∞

Proof. The Cauchy criterion is equivalent to the condition that the sequence
of partial sums Sn is a Cauchy sequence. Since M is complete, then Sn
converges. Since an infinite series converges iff the sequence of partial sums
converges, then the result is shown.

Theorem 3.11. (”Random series theorem”)

Let {Xi}i≥1 be independent with E(Xi) = 0 and E(X2
i ) = σ2

i <∞ for all i. Suppose
that

∑∞
i=1 σ

2
i <∞. Then

∑∞
i=1Xi(ω) converges a.s.

Proof. We want to show that the Cauchy criterion is satisfied. Chebyshev’s
inequality allows us to control the size of the partial sum for given k, but that
is not enough to satisfy the criterion. Instead, we must use Kolmogorov’s
maximal inequality to control the size of any given sub-series in the tail.

Define Mk(ω) = supn≥k |
∑n
j=kXj(ω)|. By the Cauchy criterion, it will be

sufficient to show that Mk(ω)→ 0 a.s.

Fix ε > 0 and N > k. Note that, by Kolmogorov’s maximal inequality (for
the series starting from index k),

P

(
sup

k≤n≤N

∣∣∣ n∑
i=k

Xi(ω)
∣∣∣ > ε

)
≤

n∑
i=k

σ2
i

ε2

Letting N →∞, and using continuity of P, we have

P

(
sup
n≥k

∣∣∣ n∑
i=k

Xi(ω)
∣∣∣ > ε

)
= P(Mk(ω) > ε) ≤

∞∑
i=k

σ2
i

ε2
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Now we send k →∞ to obtain the limit of Mk on the left side:

lim
k→∞

P(Mk(ω) > ε) = 0

where the RHS → 0 as k → ∞ since
∑
σ2
i < ∞ and σ2

i > 0 for all i, so the
series is convergent.

So we have shown Mk(ω)
P−→ 0. We now show that Mk(ω)

a.s.−→ 0 as well. Fix
k ≥ 1 and define

Wk(ω) = sup
k≤n1≤n2

∣∣∣ n2∑
i=n1

Xi(ω)
∣∣∣

By the triangle inequality, we have Mk ≤Wk ≤ 2Mk.

Now note that Wk is decreasing (a.s.) in k. So let W∞ = limk→∞Wk. Since

Wk ≤ 2Mk and Mk
P−→ 0, then Wk

P−→ 0 also. Since Wk
a.s.−→ W∞, then also

Wk
P−→W∞. But we just showed that Wk

P−→ 0, so W∞ = 0.

Finally, note that since Mk ≤Wk, then Mk
a.s.−→ 0 as well.

Theorem 3.12. (Kolmogorov 3-series theorem)

Let {Xn}n≥1 be an independent sequence of R-valued r.v.’s with E|Xn| < ∞ and
E(X2

n) <∞. Define, for some A > 0:

Yn = Xn · 1(|Xn|≤A)

Then
∑∞
n=1Xn converges a.s. if and only if:

1.
∑∞
n=1 P(|Xn| > A) <∞

2.
∑∞
n=1 E(Yn) converges

3.
∑∞
n=1 Var(Yn) <∞

Remark. The conditions for 1) and 3) only require the series to be bounded,
but since the terms of those series are non-negative, then it is equivalent to
requiring the series to be convergent.

Proof. Define X ′n = Yn − EYn. Thus EX ′n = 0 and Var(X ′n) = Var(Yn).

Note that the sequence of r.v.’s {X ′n} satisfies the requirements of the ”Ran-
dom series theorem.” Therefore

∑∞
n=1X

′
n =

∑∞
n=1(Yn − EYn) converges a.s.

Therefore, since
∑∞
n=1 EYn converges by assumption, the difference of the

series
∑∞
n=1 Yn must converge a.s. also.

Note P(Xn 6= Yn) = P(|Xn| > A). By assumption,
∑∞
n=1 P(|Xn| > A) < ∞

so that by Borel-Cantelli, P(Xn 6= Yn i.o.) = 0.
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Equivalently, this means that P(Xn = Yn eventually) = 1. So for a.e. ω,
there exists N(ω) such that for n ≥ N(ω), Xn(ω) = Yn(ω). Therefore,

∞∑
n=N(ω)

Yn =

∞∑
n=N(ω)

Xn

And since
∑
Yn converges a.s. as shown above, its tail converges a.s. Thus

the tail of
∑
Xn converges a.s., so that the entire series converges a.s.

3.3 Strong law of large numbers

We begin by proving the important Kronecker’s lemma and give some motivation
for the proof.

Lemma 3.13. (Cesaro’s lemma)

Let {an} be a sequence of strictly positive real numbers with an ↑ ∞. Let {Xn} be
a convergent sequence of real numbers. Then:

1

Xn

n∑
k=1

(ak − ak−1)Xk → limXn

Proof. Let ε > 0. Since Xn is convergent, we can choose N such that

Xk > limXn − ε whenever k ≥ N

Then split the sum into the portion up to N and the portion beyond N , and
apply the above inequality:

lim inf
n→∞

1

Xn

n∑
i=1

(ak − ak−1)Xk

≥ lim inf
n→∞

{
1

Xn

N∑
k=1

(ak − ak−1)Xk +
an − aN
Xn

(limXn − ε)

}

≥ lim inf
n→∞

{
1

Xn

N∑
k=1

(ak − ak−1)Xk +
an − aN
an

(limXn − ε)

}
≥ 0 + limXn − ε

Where the last step follows from the fact that an ↑ ∞ and aN is finite.

This is true for all ε > 0, so lim inf ≥ limXn. To show that lim sup ≤ limXn,
follow the same argument except chooseN such thatXk < limXn+ε whenever
k ≥ N .

Lemma 3.14. (Kronecker’s lemma)

Let {Yn}n≥1 be a real-valued sequence and let {an}n≥1 be a sequence of strictly
positive real numbers with an ↑ ∞. If

∑
Yn/an <∞, then Sn/an → 0.
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Proof. Define Xn =
∑n
i=1 Yn/an. By assumption, Xn converges so limXn

exists. Note Xk −Xk−1 = Yk/ak so that:

Sn =

n∑
k=1

ak(Xk −Xk−1)

= anXn −
n∑
k=1

(an − an−1)Xk−1

Divide by an, send n→∞, and apply Cesaro’s lemma.

Theorem 3.15. (Kolmogorov criterion)

Suppose {Xn}n≥1 is a sequence of independent r.v.’s with EXn = 0 and Var(Xn) =
EX2

n <∞.

If, for some 0 < an ↑ ∞,
∑

E(X2
n)/a2

n <∞, then Sn/an
a.s.−→ 0.

Proof. Consider the sequence of random variables Yn = Xn/an. Note that
EYn = 0 and Var(Yn) = EX2

n/a
2
n. By independence, Var(Yn) <∞.

By the ”random series theorem”, then
∑
Yn(ω) =

∑
Xn(ω)/an converges a.s.

and thus, by Kronecker’s lemma, Sn/an → 0 a.s.

Example. (Rates of convergence)

Another way of interpreting the result that Sn/an → 0 is that our choice of an
grows faster than Sn. To illustrate how this can be used, consider the following
setup:

Let {Xn}n≥1 be iid with E(X2
n) < ∞ and EXi = 0. Let a2

n = n(log n)1+ε, ε > 0.
Then note:

∞∑ E(X2
n)

n(log n)1+ε
= c

∞∑ 1

n(log n)1+ε
<∞

And therefore by the Kolmogorov criterion,

Sn
an

=
Sn√

n log n(log n)ε/2
a.s.−→ 0

To compare, the CLT gives us that lim supSn/
√
n = ∞ a.s. and the law of the

interated logarithm gives us the most optimal bound lim supSn/
√

2n log log n
a.s.−→ 1.

So our choice of an grows slightly faster than optimally, but not by much.

Theorem 3.16. (Strong law of large numbers)

Suppose {Xi}i≥1 are iid with E|Xi| <∞ with EXi = µ. Then Sn/n
a.s.−→ µ.

Proof. We use truncation to obtain a sequence of r.v.’s with finite 2nd moment.
We then show a.s. convergence of the sequence of partial sums of that series
by Kolmogorov’s criterion, and then use dominated convergence to to show
convergence of the original sequence.
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Step 1: show that truncating is OK

Let Yk = Xk · 1(|Xk|≤k). Note E(Y 2
k ) ≤ k2 <∞ so that we can apply our 2nd

moment results to this sequence. Observe that:

∞∑
k=1

P(Yk 6= Xj) =

∞∑
k=1

P(|Xk| ≥ k)

=

∞∑
k=1

P(|X1| ≥ k)

≤
∫ ∞

0

P(|X1| > x) dx

= E|X1| <∞

Therefore, by Borel-Cantelli, we have P(Yk 6= Xk i.o.) = 0. So for a.e. ω,
there exists N(ω) s.t. ∀k ≥ N(ω), Xk(ω) = Yk(ω). Thus the tail behavior is
identical after a certain point, so it will be sufficient to show that

1

n

n∑
Yk

a.s.−→ µ

Step 2: show 1
n

∑n
(Yk − EYk)

a.s.−→ 0

Let X ′k = Yk − EYk. Note EX ′k = 0 and Var(X ′2k ) = Var(Yk) <∞.

By the Kolmogorov criterion, to show 1
n

∑n
X ′k

a.s.−→ 0, it will be sufficient to
show that

∑∞ E(X ′2n )/n2 <∞.

Note that E(X ′2n ) ≤ E(Y 2
n ). Also note the following identity for a non-negative

random variable X:

E(Xp) = p

∫ ∞
0

xp−1 · P(X > x) dx

Applying this to the random variable |Yn| with p = 2, we have:

E(Y 2
n ) = 2

∫ ∞
0

x · P(|Yk| > x) dx

= 2

∫ ∞
0

x · P(|Xk| > x) · 1(x≤n) dx

Thus we have:
∞∑
n=1

E(X ′2n )

n2
≤
∞∑
n=1

2
∫∞

0
x · P(|Xk| > x) · 1(x≤n) dx

n2

=

∫ ∞
0

∞∑
n=1

2x · P(|Xk| > x) · 1(x≤n)

n2
dx

=

∫ ∞
0

P(|X1| > x) ·G(x) dx

where G(x) = 2x

∞∑
n=1

1x≤n

n2
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We show that G(x) is upper bounded so that we can pull it outside of the
integral. Then we will have shown that the LHS sum is ≤ a constant times
E|X1|, which is finite by assumption.

We show that G(x) is upper bounded by 4. First, suppose that x ≤ 1. Then:

G(x) ≤ 2

∞∑ 1

n2
= 2 · π

2

6

Therefore for general x, we have that

G(x) ≤ 2x

∞∑
n=dxe

1

n2

Next, using the identity 1
n2 ≤

∫ n
n−1

1
y2 dy, we have

G(x) ≤ 2x

∫ ∞
dxe−1

1

y2
dy

≤ 2x

⌈
1

y

⌉ ∣∣∣∣∣
∞

dxe−1

=
2x

dxe − 1
≤ 4

Thus the
∑

E(X ′2n )/n2 <∞, so 1
n

∑n
(Yk − EYk) converges to 0 a.s.

Step 3: show 1
n

∑n EYk
a.s.−→ 0

At this stage we have that 1
n

∑n
(Yk − EYk)

a.s.−→ 0.

If we can show that 1
n

∑n EYk
a.s.−→ µ, then it will imply that 1

n

∑n
Yk

a.s.−→ µ
as well.

To see this, note simply that

EYk = E(Xk · 1|Xk|≤k)

= E(X1 · 1|X1|≤k)

DC−→ EX1 as k →∞

Thus since EYk
a.s.−→ µ, then 1

n

∑n EYk
a.s.−→ µ also.

Corollary 3.17. Suppose X1, X2, . . . are iid with EX+
i =∞ and EX−i <∞. Then

1
n

∑n
Xk

a.s.−→∞.

Proof. Fix B > 0. Let Yk = Xk · 1Xk≤B .

Note that the {Yk}k≥1 are also iid with

E|Yk| = E(X+
1 · 1X+

1 ≤B
) + EX−1 <∞
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EYk = E(X+
1 · 1X+

1 ≤B
)− EX−1 <∞

By the strong law,

1

n

n∑
Yk

a.s.−→ E(X+
1 · 1X+

1 ≤B
)− EX−1

And since Yk ≤ Xk for all k, then

lim inf
1

n

n∑
Xk ≥ lim

1

n

n∑
Yk = E(X+

1 · 1X+
1 ≤B

)− EX−1

This is true for any B. So sending B →∞, by monotone convergence we can
see that the RHS diverges to infinity. Thus the limit of 1

n

∑n
Xk =∞.
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4 Martingales

4.1 Conditional expectation

Definition. (Conditional expectation)

Let (Ω,F ,P) be a probability space and let X : Ω→ R be a random variable with
E|X| <∞.

Let G ⊂ F be a sub-σ-field of F (e.g. G = σ(Y ) for some random variable Y defined
on the same probability space).

Then there exists a random variable Z called the conditional expectation of X
given G, written E(X | G), with the following two properties:

1. Z is G-measurable.

2. For any set A ∈ G, ∫
A

X dP =

∫
A

Z dP

Proof. (of existence)

Consider the probability space (Ω,G,P). Since P is defined on F and G ⊂ F ,
then its restriction is a measure on G.

First suppose that X ≥ 0. Define the function ν(A) =
∫
A
X dP, A ∈ G. It

is easily checked that ν is a measure on G such that ν � P. Then by the
Radon-Nikodym theorem, there exists an a.e. unique G-measurable function
Z : (Ω,G,P)→ R such that

ν(A) =

∫
A

Z dP =

∫
A

X dP

Furthermore, Z is integrable since E|X| <∞.

For the case of X not necessarily ≥ 0, write X = X+ − X− and let Z1 =
E(X+ | G) and Z2 = E(X− | G). Then Z1 − Z2 is integrable and:∫

A

X dP =

∫
A

X+ dP−
∫
A

X− dP

=

∫
A

Z1 dP−
∫
A

Z2 dP

=

∫
A

(Z1 − Z2) dP

Note that the a.e. uniqueness of the CE follows immediately from Radon-Nikodym.
But proving it explicitly is easy:
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Proof. Assume there exists Z,Z ′ such that, for A ∈ G,∫
A

X dP =

∫
A

Z1 dP =

∫
A

Z2 dP

Fix ε > 0 and let E = {Z1 − Z2 > ε}. Then

0 =

∫
E

X −X dP =

∫
E

Z − Z ′ dP ≥ ε · P(E)

So Z ≥ Z ′ a.e. Flip Z,Z ′ to show the opposite direction.

Remark. Note that we cannot conclude that Z = X from the fact that∫
A
Z dP =

∫
A
X dP, since X may not be G-measurable.

Theorem 4.1. The second condition in the definition of CE is equivalent to the
following conditions:

1. Let D be a π-class with G = σ(D). Then
∫
A
X dP =

∫
A
Z dP for all A ∈ D.

2. For any bounded G-measurable r.v. V , E(XV ) = E(ZV ).

Proof. For the first, define L = {A ∈ G :
∫
A
X dP−

∫
A
Z dP}. Show that L is

a λ-class.

For the second, note that the condition obviously holds for V = 1A. Thus
it must hold for simple functions, and, by monotone convergence, for general
measurable functions.

Example. (Full information)

If G = F , then E(X | G) = X. To see this, note that X always satisfies condition
(2) so the only thing keeping X from equalling E(X | G) is condition (1), which is
satisfied.

Intuitively, if we know exactly what happened in Ω, then our best guess of the value
of X(ω) is X(ω) itself.

Example. (No information)

If G = {∅,Ω}, then E(X | G) = EX. To see this, note that G is independent of X.
Therefore: ∫

A

X dP = E(X1A) = EX · E1A = EX

since A = ∅ or A = Ω.

Intuitively, if we don’t know anything about what happened in Ω, then our best
guess of the value of X(ω) is simply the unconditional expected value.

Example. (Partition information)

Let {Bn}n≥1 be a measurable partition of Ω. Let G = σ(B1, B2, . . .). Then

E(X | G) =

∫
Bi
X dP

P(Bi)
=

E(X;Bi)

P(Bi)
on Bi
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Where E(X;Bi) is the expected value of X restricted to Bi:

E(X;Bi) =

∫
Bi

X dP

To see this, note that the RHS is constant on each Bi, so it is measurable w.r.t. G
and condition (1) is satisfied. To show condition (2), note that the set {∅, B1, B2, . . .}
generates G and also is a π-class since the Bi’s constitute a partition. Therefore we
only need to check equality for a given Bi by the generating π-class property:∫

Bi

E(X;Bi)

P(Bi)
dP =

E(X;Bi)

P(Bi)

∫
Bi

dP = E(X;Bi) =

∫
Bi

X dP

Intuitively, the information in Bi tells us which element of the partition our outcome
lies in, and, given this information, our best guess for X is the average value of X
over that partition.

Note that the example of no information is a special case of this example.

Theorem 4.2. (Bayes’ formula)

Define P(A |B) = P(A ∩B)/P(B) and P(A | G) = E(1A | G).

Let G ∈ G. Then

P(G |A) =

∫
G
P(A | G) dP∫

Ω
P(A | G) dP

Proof. Note that:∫
G

P(A | G) dP =

∫
G

E(1A | G) dP =

∫
G

1A dP = P(A ∩G)

And by a similar argument,∫
G

P(A | G) dP = P(A)

Therefore we have:∫
G
P(A | G) dP∫

Ω
P(A | G) dP

=
P(A ∩G)

P(A)
= P(G |A)

Theorem 4.3. (Two basic properties)

1. If V is G-measurable, then E(V | G) = V .

2. E(X + Y | G) = E(X | G) + E(Y | G)

Proof. Trivial.

Theorem 4.4. Let V be G-measurable with E|V X| <∞. Then

E(V X | G) = V · E(X | G)
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Proof. We show the result for indicator functions: V = 1B , B ∈ G. Then the
result will hold for simple and general measurable functions by MCT.

First note that, since V is G-measurable and E(X | G) is G-measurable, then
V · E(X | G) is G-measurable as well.

Next note that, for A ∈ G,∫
A

V X dP =

∫
A

V · E(X | G) dP∫
A

1B ·X dP =

∫
A

1B · E(X | G) dP∫
A∩B

X dP =

∫
A∩B

E(X | G) dP

And the result follows from the fact that A ∩B ∈ G.

Remark. Important: note that the assumption E|V X| < ∞ is necessary so
that the CE is well-defined.

Theorem 4.5. Let X,Y be r.v.’s with X ≤ Y a.s. and E|X| < ∞, E|Y | < ∞.
Then:

E(X | G) ≤ E(Y | G) a.s.

Proof. Fix ε > 0. Let A = {E(X | G)−E(Y | G) > ε}. Note A is G-measurable
so we can write:∫

A

E(X | G) dP =

∫
A

X dP ≤
∫
A

Y dP =

∫
A

E(Y | G) dP

Where the center inequality follows because X ≤ Y a.s., which shows that A
must have measure zero. This is true for any ε > 0, so E(X | G) ≤ E(Y | G) a.s.

Theorem 4.6. Let Xn ≥ 0 be a sequence of r.v.’s with Xn ↑ X and E|X| < ∞.
Then

E(Xn | G) ↑ E(X | G)

Remark. If we consider Xn = Y1 − Yn for random variables Yn with Yn ↓ Y
and E|Y1|,E|Y | < ∞, then using linearity we can obtain the corresponding
result E(Yn | G) ↓ E(Y | G).

Also, compare this to the similar-looking result given by the Levy zero-one
law (convergence theorems).

Proof. Let A ∈ G. Define Zn = E(Xn | G). Note that Zn is measurable so
that Z∞ is also measurable. Also note that Zn ↑, so that by MCT we have:

1.
∫
A
Zn dP =

∫
Zn1A dP ↑

∫
Z∞1A dP

2.
∫
A
Zn dP =

∫
Xn1A dP ↑

∫
X∞1A dP
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Theorem 4.7. Let X be independent of G. Then E(X | G) = EX.

Lemma 4.8. Let X be independent of G and let g : R→ R be such that E|g(X)| <
∞. Let Y be a r.v. which is G-measurable with E|Y | < ∞ and E|g(X) · Y | < ∞.
Then

E(g(X) · Y ) = Eg(X) · EY

Proof. RESOLVE THE BELOW QUESTIONS FIRST:

QUESTION 1: If X is independent of G and Y is G-measurable, then that
implies that X is independent of Y , right?

QUESTION 2: In the above lemma, the requirement on g is that E|g(X)| <
∞. Is this equivalent to saying that g is a bounded measurable function? If
not, then why did we require that functions be bounded and measurable in
the previous section on independence?

Theorem 4.9. Let X : Ω → S1 and Y : Ω → S2 by independent. Also let
φ : S1 × S2 → R be such that E|φ(X,Y )| <∞. Then,

E(φ(X,Y ) |X) = g(X)

where g is defined by g(x) = E(φ(x, Y )).

Proof. READ UP ON PRODUCT SPACES FIRST

Theorem 4.10. (Tower property)

Let G ⊂ H be sub-σ-fields of F . Then,

E
[
E(X |H) | G

]
= E(X | G)

Remark. The undergraduate analogue to this property is:

E
[
E(X | (Y, Z)) |Y

]
= E(X |Y )

Additionally, if G = {∅,Ω}, then G ⊂ H obviously and:

E
[
E(X |H) | G

]
= E(X | {∅,Ω}) = EX

Proof. G-measurability is obvious. Let A ∈ G. We want to show:∫
A

E(X |H) dP =

∫
A

E(X | G) dP

This follows from the definition of conditional expectation and the fact that
if A ∈ G, then A ∈ H. Thus:∫

A

E(X |H) dP =

∫
A

X dP =

∫
A

E(X | G) dP
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Corollary 4.11. Keeping G ⊂ H, we also have:

E
[
E(X | G) |H

]
= E(X | G)

Proof. E(X | G) is H-measurable since E(X | G) is G-measurable and G ⊂ H.

Theorem 4.12. (Two important inequalities)

1.
∣∣E(X | G)

∣∣ ≤ E(|X| | G)

2. Let I be an open set in R and let φ : I → R be convex. Let X be a random
variable that only takes values in I and such that E(φ(X)) <∞. Then:

φ
[
E(X | G)

]
≤ E(φ(X) | G)

Proof. To prove the first, note that −|X| ≤ X ≤ |X|. Take conditional
expectations.

The proof of the second is exactly analogous to the proof of the unconditional
Jensen’s inequality.

4.2 L2 interpretation of conditional expectation

Let (Ω,F ,P) be a probability space. Define L2(Ω,F ,P) = {Y : EY 2 < ∞}. It is
easily checked that this is a Hilbert space with the inner product

〈X, Y 〉 = E(XY )

The corresponding space generated by the sub-σ-field G, L2(Ω,G,P) is a closed
linear subspace of L2(Ω,F ,P). Furthermore, if X ∈ L2(Ω,F ,P), then E(X | G) is
the projection of X onto L2(Ω,G,P).

This suggests two interesting facts:

Theorem 4.13. 〈E(X | G), X − E(X | G)〉 = 0

Proof. Let Z = E(X | G). Note that E
[
E(Z(X − Z) | G)

]
= E(Z(X − Z)).

We show that E(Z(X − Z) | G) = 0 so that the entire LHS expectation is 0.
Since Z is G-measurable, then:

E(Z(X − Z) | G) = Z · E(X − Z | G)

= Z ·
[
E(X | G)− E(Z | G)

]
= Z ·

[
E(X | G)− Z

]
= 0
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Theorem 4.14. E(X | G) = arg min{E(X − V )2 : V is G-measurable}

Proof. Let Z = E(X | G). Note that

E(X − V )2 = E
[
(X − Z + Z − V )2

]
= E(X − Z)2 + E(Z − V )2 − 2E

[
(X − Z)(Z − V )

]
If we can show that the cross term is zero, then:

E(X − V )2 = E(X − Z)2 + E(Z − V )2 ≥ E(X − Z)2

Note that:

E
[
(X − Z)(Z − V )

]
= E

[
Z(X − Z)

]
− E

[
V (X − Z)

]
By the previous theorem, the first term in the RHS is zero. For the second
term,

E
[
V (X − Z)

]
= E

[
E(V (X − Z) | G)

]
= E

[
V · E(X − Z | G)

]
V is G-measurable

Noting that E(X − Z | G) = E(X | G) − E(Z | G) and observing that Z is G-
measurable shows that this term is zero.

Definition. (Conditional variance)

The conditional variance of X given G is

Var(X | G) = E
([
X − E(X | G)

]2 | G)
Theorem 4.15. Var(X) = E

[
Var(X | G)

]
+ E

[(
E(X | G)− EX

)2]
Proof.

E
(
X − EX

)2

= E
(
X − E(X | G) + E(X | G)− EX

)2

4.3 Martingale basics

Definition. (adapted random variables)

Let (Ω,F ,P) be a probability space and let G ⊂ F be a sub-σ-field. Then we say
a random variable X is adapted to G if X is measurable w.r.t. G.
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Definition. (Martingale)

Fix a filtration of {Fn}n≥1. Let {Xn}n≥1 be a sequence of r.v.’s.

{Xn} is a martingale with respect to {Fn} if:

1. E|Xn| <∞ ∀n

2. Xn is adapated to Fn (i.e. Fn ⊂ σ(X1, . . . , Xn))

3. E(Xn+1 | Fn) = Xn a.s. ∀n

If E(Xn+1 | Fn) ≥ Xn a.s. ∀n, then {Xn} is a submartingale

If E(Xn+1 | Fn) ≤ Xn a.s. ∀n, then {Xn} is a supermartingale

Example. Suppose ξ1, ξ2, . . . are indepedent. Let Fn = σ(ξ1, . . . , ξn). Define

Xn = ξ1 + . . .+ ξn

Assum E|ξi| <∞ for all i ≥ 1. When is this a martingale?

1. E|Xn| <∞ by the triangle inequality.

2. Xn is adapted to Fn (Y is a deterministic function of ξ1, . . . , ξn)

3. To check the last martingale condition, note that:

E(Xn+1 | Fn) = E(ξ1 + . . .+ ξn+1 | Fn)

=

n∑
E(ξi | Fn) + E(ξn+1 | Fn)

=

n∑
ξi + E(ξn+1)

= Xn + E(ξn+1)

Therefore if E(ξi) = 0 for all i, then {Xn}n≥1 is a martingale. If E(ξi) ≥ 0,
then it is a submartingale. If E(ξi) ≤ 0, then it is a supermartingale.

Example. Let {ξi}n≥1 be independent with Eξi = 0 and E(ξi)
2 = σ2

i <∞ ∀i. Let
{Fn}n≥1 be a filtration given by Fn = σ(ξ1, . . . , ξn). Define

Qn = X2
n −

n∑
σ2
i and Xn =

n∑
ξi

Then {Qn}n≥1 is a martingale.

1. E|Qn| = 0 <∞ for all n ≥ 1.

2. Qn is Fn-measurable.

3. We want to show that E(Qn+1 | Fn) = Qn
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Note that:

E(X2
n+1 | Fn) = E

(
(Xn + ξn+1)2 | Fn

)
= E

(
X2
n + ξ2

n+1 + 2Xnξn+1 | Fn
)

= X2
n + E(ξ2

n+1) + 2XnE(ξn+1)

= X2
n + σ2

n+1

Therefore we have:

E(Qn+1 | Fn) = E(X2
n+1 −

n+1∑
σ2
i | Fn)

= X2
n + σ2

n+1 −
n+1∑

σ2
i

= X2
n +

n∑
σ2
i

= Qn

Remark. If the ξi’s are iid with mean zero and variance 1, then:
(

n∑
ξi

)2

− n


n≥1

is a martingale

Theorem 4.16. (Two martingale inequalities)

In both inequalities, assume the martingales are w.r.t some filtration {Fn}n≥1.

1. Suppose {Xn}n≥1 is a martingale and let φ be convex. If E|φ(Xn)| < ∞ for
all n, then {φ(Xn)}n≥1 is a submartingale.

2. Suppose {Xn}n≥1 is a submartingale and let φ be convex and increasing.
Then {φ(Xn)}n≥1 is a submartingale.

Proof. The proof for both parts is by conditional Jensen.

1. E
[
φ(Xn+1) | Fn

]
≥ φ

[
E(Xn+1 | Fn)

]
= φ(Xn)

2. E
[
φ(Xn+1) | Fn

]
≥ φ

[
E(Xn+1 | Fn)

]
≥ φ(Xn)

Example. (A multiplicative martingale)

Suppose {ξi}i≥1 are independent with Eξi = 1 for all i. Let the filtration be given
by Fn = σ(ξ1, . . . , ξn).

Mn =
∏n

ξi is a martingale w.r.t. {Fn}.

Showing the first two conditions is obvious. To show the third, note that:

E(Mn+1 | Fn) = E(Mn · ξn+1 | Fn)

= Mn · E(ξn+1 | Fn)

= Mn · E(ξn+1)

= Mn
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Example. Fix t ∈ R. Let {Xi}i≥1 be independent and let φi(t) = E(etXi). Define:

Mn =
exp(t ·

∑n
Xi)∏n

φi(t)

Mn is a martingale.

To see this, we just need to show that {Mn}n≥1 satisfies the conditions of the
previous example. In this case,

ξi =
exp(tξi)

φi(t)
⇒ Eξi = 1

Example. (Likelihood ratio martingale)

Let ξ1, ξ2, . . . be iid and fix a filtration Fn = σ(ξ1, . . . , ξn). Also let f, g be densities
and let the likelihood ratio be given by:

Ln(ξ1, . . . , ξn) =
g(ξ1) · . . . · g(ξn)

f(ξ1) · . . . · f(ξn)

1. Case 1: ξi has density f

{Ln}n≥1 is a martingale. It is easily checked that Ln is Fn-measurable and
has finite expected value (the joint density factors by independence). To check
the last condition, note:

E(Ln+1 | Fn) = E

[(
n∏ g(ξi)

f(ξi)

)
· g(ξn+1)

f(ξn+1)

∣∣∣ Fn]

=

n∏ g(ξi)

f(ξi)
· E
[
g(ξn+1)

f(ξn+1)

]
=

n∏ g(ξi)

f(ξi)
· 1 (ξn+1 has density f)

= Ln

2. Case 2: ξi has density g

If E|Ln| <∞, then {Ln}n≥1 is a submartingale.

To see this, note that {1/Ln}n≥1 is a martingale and the function φ(Ln) =
1/Ln is convex.

Definition. (Alternate definition of martingale)

Let {Fn}n≥0 be a filtration and let {Xn}n≥0 be a sequence of random variables.
Define:

∆n = Xn −Xn−1, n ≥ 1

{Xn} is a martingale with respect to {Fn} if:

1. E|X0| <∞ and E|∆n| <∞, ∀n ≥ 1.

2. X0 is F0-measurable and ∆n is Fn-measurable ∀n ≥ 1.
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3. E(∆n | Fn−1) = 0 a.s. ∀n

If E(∆n | Fn−1) ≥ 0 a.s. ∀n, then {Xn} is a submartingale

If E(∆n | Fn−1) ≤ 0 a.s. ∀n, then {Xn} is a supermartingale

Definition. (Predictable process)

{Hn}n≥1 is a predictable process with respect to filtration {Fn}n≥0 if, for
all n ≥ 1, Hn is Fn−1-measurable.

Example. Let Hn be the amount of stock bought on day n− 1 at price xn−1, and
sold on day n at price xn. The amount of total profit or loss from this action is
Hn(xn − xn−1).

Remark. Note that, for a process {Xn}n≥0, if we have X0 and ∆1,∆2, . . .
where ∆n = Xn −Xn−1, then

Xn = X0 +

n∑
j=1

∆n

Lemma 4.17. (Doob decomposition)

Let {Xn}n≥0 be a sequence of r.v.’s adapted to filtration {Fn}n≥0 with E|Xn| <∞
for all n ≥ 0. Let ∆X

n = Xn −Xn−1.

Define {Yn}n≥0 by:

Y0 = X0, ∆Y
n = ∆X

n − E(∆X
n | Fn−1)

Define {Zn}n≥0 by:
Z0 = 0, ∆Z

n = E(∆X
n | Fn−1)

Then the following hold:

1. Xn = Yn + Zn

2. {Yn}n≥1 is a martingale.

3. {Zn}n≥1 is a predictable process.

Proof. Zn is Fn−1-measurable by defintion of conditional expectation ∀n, and
therefore is a predictable process.

4.4 Discrete stochastic integral

Lemma 4.18. Recall that, if {Fn}n≥0 is a filtration, then:

F∞ = σ (∪∞n=0Fn)

If T is a stopping time, then {T =∞} ∈ F∞.
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Proof. {T = ∞} = ∩∞n=0{T > n}. Note that {T > n} = {T ≤ n}c ∈ Fn for
each n. Since F∞ is the σ-field generated by the union of these Fn’s, then it
is closed under countable intersection. Thus {T =∞} ∈ F∞.

Definition. (σ-field up to time T)

Suppose T is a stopping time. The σ-field up to time T is:

FT = {A ∈ F∞ : A ∩ {T = n} ∈ Fn, n ≥ 0}

Proof. We show the three conditions to be a σ-field are met:

1. Ω ∈ FT : obvious.

2. Closed under complements: Ac ∩ {T = n} = {T = n} \ [A ∩ {T = n}]

3. Closed under countable union: ∪∞Ai ∩ {T = n} = ∪∞[Ai ∩ {T = n}]

Corollary 4.19. Note that the σ-field up to time T can also be characterized by:

FT = {A ∈ F∞ : A ∩ {T ≤ n} ∈ Fn, n ≥ 0}

Proof. Note that the requirement that {T = n} ∈ Fn for a stopping time T
is equivalent to the requirement that {T ≤ n} ∈ Fn.

Theorem 4.20. (Stopping time fact, part 1)

Let T be a stopping time and let {Xn}n≥0 be a sequence of r.v.’s adapted to a
filtration {Fn}n≥0. Define:

Y =

{
XT if T <∞
0 if T =∞

Then Y is FT -measurable.

Proof. Fix B ∈ B(R). We need to check that {Y ∈ B} ∈ FT . Naturally we
split the problem into two cases:

1. T <∞:

Note that the condition {Y ∈ B} ∈ FT is equivalent to the condition that
{Y ∈ B} ∩ {T = n} ∈ Fn for all n ≥ 0. Then note that

{Y ∈ B} ∩ {T = n} = {Xn ∈ B} ∩ {T = n}

and that {Xn}n≥0 is adapted to the filtration {Fn}n≥0, so that {Xn ∈ B} ∈
Fn, and that T is a stopping time.

2. T =∞:

Note that the condition {Y ∈ B} ∈ FT is equivalent to the condition that
{Y ∈ B} ∩ {T =∞} ∈ F∞.

Since Y = 0, then {Y ∈ B} is either Ω or ∅ for any B ∈ B(R), which is
automatically in F∞. Also, by our lemma above, {T =∞} ∈ F∞.
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Theorem 4.21. (Stopping time fact, part 2)

Suppose S and T are stopping times with respect to the same filtration and with
S ≤ T . Then FS ⊂ FT .

Proof. Let A ∈ FS . We show that A ∈ FT also.

By the definition of σ-field up to time S, we have

A ∩ {S ≤ n} ∈ Fn for all n ≥ 0

Then since S ≤ T , we have:

A ∩ {T ≤ n} = A ∩ {S ≤ n} ∩ {T ≤ n}

Noting {T ≤ n} ∈ Fn completes the proof.

Theorem 4.22. (Stopping time fact, part 3)

Suppose S and T are stopping times with respect to the same filtration. Then
{S = T} ∈ FS ∩ FT .

Proof. Recall that if S and T are stopping times, then min(S, T ) is also a
stopping time. Furthermore, by the definition of σ-field after time min(S, T ),

Fmin(S,T ) = {A ∈ F∞ : A ∩ {min(S, T ) ≤ n} ∈ Fn, n ≥ 0}
= FS ∩ FT

Now note that: {S = T} = ∪∞n=0

{
{S = n} ∩ {T = n}

}
.

Clearly, {S = n} ∩ {T = n} ∈ FS ∩FT for fixed n. But since the intersection
of two σ-fields is again a σ-field, then FS∩FT is closed under countable union,
so that

{S = T} = ∪∞n=0

{
{S = n} ∩ {T = n}

}
∈ FS ∩ FT

Definition. (Process stopped at time n)

Let T be a stopping time and let {Xn}n≥0 be a sequence of r.v.’s adapted to a
filtration {Fn}n≥0. Define T ∧ n = min(T, n) for some fixed n.

We call the sequence of r.v.’s {XT∧n : n ≥ 0} a process stopped at time n.

Example. Let {Xn} be as above with T = inf{n ≥ 0 : Xn ≥ 30}.

{XT∧n}n≥0 will evolve as {Xn} until n reaches T = t0, the first time at which Xn

goes above 30. Then {XT∧n} will take the value Xt0 (i.e. the value {Xn} takes
when it goes above 30 for the first time) for the rest of its lifetime.

Definition. (Discrete stochastic integral)

Let {Fn}n≥0 be a filtration, let {Xn}n≥0 be a process adapted to that filtration,
and let {Hn}n≥1 be a predictable process.
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The sequence {Yn}n≥0 defined by Y0 = 0 and:

∆Y
n = Yn − Yn−1 = Hn∆X

n = Hn(Xn −Xn−1)

Yn = Y0 +

n∑
j=1

∆Y
n =

n∑
j=1

Hj(Xj −Xj−1)

is called the discrete stochastic integral, denoted Y = HX or Yn = (HX)n.

Theorem 4.23. (Martingale properties of discrete stochastic integrals)

1. If {Xn}n≥0 is a martingale and {Hn}n≥1 is bounded and predictable, then
{Yn}n≥1 is a martingale also.

2. If {Xn}n≥0 is a sub(super)martingale and {Hn}n≥1 is bounded, predictable
and non-negative, then {Yn}n≥1 is a sub(super)martingale also.

Remark. If we interpret the predictable process {Hn} as a betting strategy,
then the fact that {Yn} must be a martingale tells us that we cannot come
up with a betting strategy that will ”consistently” make a net profit/loss so
long as {Xn} is a martingale.

Proof. Checking the first two conditions (in the alternate definition of a mar-
tingale) is trivial.

For the third condition, consider the case of a martingale:

E(∆Y
n | Fn−1) = E(Hn(Xn −Xn−1) | Fn−1)

= Hn · E(Xn −Xn−1 | Fn−1)

= 0

Where we can pull out Hn since it is bounded, so that the expectation of
Hn(Xn−Xn−1) is finite. The argument for a sub(super)martingale is exactly
analogous, except for the additional requirement that Hn ≥ 0 so that the sign
of the expected value does not switch.

Theorem 4.24. Suppose {Xn}n≥0 is a (sub)martingale and T is a stopping time.
Then {XT∧n}n≥0 is also a (sub)martingale.

Proof. Let Hk = 1k≤T . Thus is the strategy where, every day until day T ,
you buy 1 unit of stock and sell it immediately the next day.

Since {Xn}n≥0 is a (sub)martingale, then the discrete stochastic integral
{Yn}n≥0 defined by

Yn = (HX)n =

{∑n
k=1Hk(Xk −Xk−1), n ≥ 1

0, n = 0

is a (sub)martingale if {Hk}n≥0 is predictable, bounded, and non-negative.
Clearly it is bounded and non-negative. To see that it is predictable, note
that {T ≥ k} = {T ≤ k − 1}c ∈ Fk−1.
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Since Hk = 1k≤T , then Yn is a sum of ∆X
k from k = 0 to k = n if T ≥ n.

Similarly, Yn is a sum of ∆X
k from k = 0 to k = T if T < n. In other words,

Yn =

{
Xn −X0, T ≥ n
XT −X0, T < n

But this is precisely the definition of XT∧n −X0, and we already shown that
{Yn}n≥0 is a (sub)martingale.

Proof. (Alternate)

This proof does not use the discrete stochastic integral. We show only the
conditional expectation property of a martingale:

E
[
X(n+1)∧T | Fn

]
= E

[
XT · 1T≤n +Xn+1 · 1T>n | Fn

]
= XT · 1T≤n + 1T>n · E(Xn+1 | Fn)

= XT · 1T≤n +Xn · 1T>n
= Xn∧T

4.5 Optional sampling theorems

We begin by noting two simple facts:

1. (Follows from tower property)

(a) If {Xn}n≥0 is a martingale, then EX0 = EX1 = . . ..

(b) If {Xn}n≥0 is a submartingale, then EX0 ≤ EX1 ≤ . . ..

(c) If {Xn}n≥0 is a supermartingale, then EX0 ≥ EX1 ≥ . . ..

2. If {Xn}n≥0 is a submartingale, then Zn = −Xn ⇒ {Zn}n≥0 is a supermartingale

Theorem 4.25. (Optional sampling theorem)

Let {Xn}n≥0 be a submartingale and let T1, T2 be stopping times such that

1. T1 ≤ T2 a.s.

2. T1 <∞, T2 <∞

Under certain conditions (∗), then:

E(XT2 | FT1) ≥ XT1 and so EXT2 ≥ EXT1

and if {Xn}n≥0 is a martingale, then equality holds:

E(XT2
| FT1

) = XT1
and so EXT2

= EXT1
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Theorem 4.26. (”Bounded” OST)

If T1 ≤ T2 ≤ t0 where t0 is a constant, then the OST holds.

Proof. Fix A ∈ FT1 . It is sufficient to show:∫
A

E(XT2
| FT1

) dP ≥
∫
A

XT1
dP ∀A ∈ FT1

Our approach is to construct a martingale using a discrete stochastic integral
with an appropriate predictable process.

We find our predictable process by considering the stock-buying strategy of
buying 1 unit of stock at the end of day T1 and continuing to buy each day
up to day T2 if the event A happens:

Hk = 1A · 1T1<k≤T2
, k ≥ 1

To see that {Hk}k≥0 is predictable, write Hk = 1A∩{T1≤k−1} ·1T2≥k and note
that the first indicator function is Fk−1-measurable by the definition of FT1

(since A ∈ FT1).

Then the discrete stochastic integral {Yn}n≥0 is given by Y0 = 0 and:

Yn =

n∑
k=1

Hk(Xk −Xk−1)

= (XT2∧n −XT1∧n) · 1A

Therefore since Hk is bounded and non-negative and {Xn}n≥0 is a submartin-
gale, then {Yn}n≥0 is also a submartingale. Thus since EY0 = 0, then we have
that for all n > 0,

EYn ≥ 0 and so E
[
(XT2∧n −XT1∧n)1A

]
≥ 0

The proof is completed by taking n = t0 and applying the definition of CE to
the LHS.

Example. (Counterexample: simple random walk)

To illustrate the importance of bounded stopping times in this theorem, consider
an iid sequence {ξi}i≥1 such that

P(ξi = +1) =
1

2
, P(ξi = −1) =

1

2

Let a filtration {Fn} be given by Fn = σ(ξ1, . . . ξn) and define {Sn}n≥0 by:

S0 = 1, Sn = 1 +

n∑
i=1

ξi

{Sn}n≥0 is obviously adapted to {Fn}, ESn = 1 <∞ for all n, and:

E(Sn+1 | Fn) = 1 + E

(
n+1∑
i=1

ξi | Fn

)
= 1 +

n∑
i=1

ξi + E(ξn+1 | Fn)
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so that it is a martingale. Now consider the stopping time T = inf{n ≥ 1 : Sn = 0}.
Note that P(T <∞) = 1 but there does not exist t0 <∞ such that P(T < t0) = 1.

Suppose we try to apply OST using T1 = 0 and T2 = T . Then we would have
EST2 = EST1 , but clearly EST2 = 0 and EST1 = 1.

Theorem 4.27. (”Unbounded” OST)

If T1 ≤ T2 <∞ a.s. and, additionally,

lim
k→∞

E
(
|XTi −XTi∧k|

)
= 0 for i = 1, 2

then the OST holds.

Proof. Fix k1, k2 ∈ {0, 1, . . .} such that k1 < k2. Consider the bounded ver-
sions of T1 and T2 given by:

T1 ∧ k1 ≤ k1, T2 ∧ k2 ≤ k2

Applying the bounded OST with T1 ∧ k1 and T2 ∧ k2, we obtain:

E(XT2∧k2 | FT1∧k1) ≥ XT1∧k1

To extend this result to the unbounded the case, we will take k2 → ∞ first
and then k1 → ∞. To justify taking k2 → ∞, we show L1 convergence of
E(XT2∧k2 | FT1∧k1) to E(XT2

| FT1∧k1):

E
[∣∣E(XT2

| FT1∧k1)− E(XT2∧k2 | FT1∧k1)
∣∣]

= E
[∣∣E(XT2

−XT2∧k2 | FT1∧k1)
∣∣]

≤ E
[
E(|XT2

−XT2∧k2 | | FT1∧k1)
]

(Conditional Jensen)

= E(|XT2
−XT2∧k2 |)→ 0 as k2 →∞

We show that this implies E(XT2
| FT1∧k1) ≥ XT1∧k1 . Fix some A ∈ F (?)

and note that:∫ ∣∣∣E(XT2∧k2 | FT1∧k1)− E(XT2
| FT1∧k1)

∣∣∣dP→ 0 as k2 →∞

⇒
∫ ∣∣∣E(XT2∧k2 | FT1∧k1) · 1A − E(XT2

| FT1∧k1) · 1A
∣∣∣dP→ 0

⇒
∣∣∣ ∫
A

E(XT2∧k2 | FT1∧k1) dP−
∫
A

E(XT2
| FT1∧k1) dP

∣∣∣→ 0

Now since E(XT2∧k2 | FT1∧k1) ≥ XT1∧k1 , we also have that∫
A

E(XT2∧k2 | FT1∧k1) dP ≥
∫
A

XT1∧k1 dP ∀k2

This is true for all k2 and since
∫
A
E(XT2∧k2 | FT1∧k1) dP converges to

∫
A
E(XT2

| FT1∧k1) dP
as just shown, then the inequality must still hold for the limit:∫

A

E(XT2 | FT1∧k1) dP ≥
∫
A

XT1∧k1 dP for arbitrary A
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Thus we have E(XT2 | FT1∧k1) ≥ XT1∧k1 . Equivalently, we can write this as

E(XT2
| FT1∧k1) ≥ XT1

on {T1 ≤ k1}

Send k1 →∞.

Note that it is not obvious how to check the condition limE(|XTi − XTi∧k|) = 0.
The following lemma gives two sufficient conditions for that condition to hold:

Lemma 4.28. Let {Xn}n≥0 be a martingale and T be a stopping time such that

1. E(|Xk| · 1T>k)→ 0 a.s.

2. E(|XT |) <∞

Then limE(|XT −XT∧k|) = 0.

Proof.

E(|XT −XT∧k|) = E(|XT −XT∧k| · 1T≤k) + E(|XT −XT∧k| · 1T>k)

= E(|XT −XT∧k| · 1T>k)

≤ E(|XT | · 1T≥k) + E|Xk| · 1T>k
(by triangle inequality)

The rightmost term → 0 by assumption, so what is left is to show that
limE(|XT | · 1T≥k) = 0.

Define Zk = |XT | · 1T≥k. Since P(T < ∞) = 1, then Zk
a.s.−→ 0. Also,

|Zk| ≤ |XT | for all k. Thus since E(|XT |) <∞ by assumption, we can apply
DCT and the result follows.

4.6 Maximal inequalities and upcrossing lemma

Definition. (Some notation)

For a sequence of random variables {Xn}n≥0, we define:

1. X∗N = sup0≤n≤N Xn

2. X∗ = supn≥0Xn

In these equalities we will make clearer the connection between sub(super)martingales
and increasing(decreasing) sequences. Note that, for a deterministic decreasing se-
quence {Xn}n≥0,

sup
n≥0

Xn = X0

An analogous result holds for supermartingales:
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Theorem 4.29. (Supermartingale maximal inequality)

Let {Xn}n≥0 be a supermartingale such that Xn ≥ 0 a.s. Then

λ · P(X∗ ≥ λ) ≤ EX0

Remark. Note the relation to Markov’s inequality applied to the first term:

λ · P(X0 ≥ λ) ≤ EX0

Proof. Fix N > 0 and λ > 0 and define T = inf{n ≥ 0 : Xn ≥ λ}. Then:

{X∗N ≥ λ} = {T ≤ N}

The proof is by ”bounded” OST.

Note that since T is a stopping time, then T ∧N is a bounded stopping time.
Let T1 = 0 ≤ T2 = T ∧N . Then by OST,

EX0 ≥ EXT∧N

= E(XT∧N · 1T≤N ) + E(XT∧N · 1T>N )

≥ E(XT∧N · 1T≤N ) (since Xn ≥ 0)

= E(XT · 1T≤N )

= E(XT · 1X∗N≥λ)

≥ λ · P(X∗N ≥ λ)

Thus we have the inequality for any given N . Now note that as N →∞, then
{X∗N ≥ λ} ↑ A, some A. Now note that A ⊂ {X∗ ≥ λ}, so we do not have
equality. However,

{X∗ > λ} ⊂ A ⊂ {X∗ ≥ λ}

So that we now have the inequality λ · P(X∗ > λ) ≤ EX0. To complete the
proof, take a sequence λi ↑ λ and note that:

P(X∗ ≥ λ) ≤ P(X∗ > λi) ≤
EX0

λi

And let i→∞.

Theorem 4.30. (Doob’s submartingale maximal inequality)

Let {Xn}n≥0 is a submartingale with respect to a filtration {Fn}n≥0. For any
N ∈ N and λ > 0, then

λ · P(X∗N ≥ λ) ≤ E
[
XN · 1X∗N≥λ

]
≤ EX+

N

Remark. Note the relation to Markov’s inequality applied to the N th term:

λ · P(X+
N ≥ λ) ≤ EX+

N
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Proof. Again, the proof is by ”bounded” OST.

Define T = inf{n ≥ 0 : Xn ≥ λ}. Let T2 = N and T1 = T ∧N . Note:

1. T1 ≤ T2 ≤ N

2. {T ≤ N} ∈ FT1

Where (2) follows from {T ≤ N} ∩ {T ∧N ≤ n} = {T ≤ n}. Therefore,∫
{T≤N}

E(XT2 | FT1) dP =

∫
{T≤N}

XT2 dP

≥
∫
{T≤N}

XT1 dP (by OST)

Now using the fact that {T ≤ N} = {X∗N ≥ λ}, we have∫
{X∗N≥λ}

XN dP ≥
∫
{X∗N≥λ}

XT∧N dP∫
{X∗N≥λ}

XN dP ≥
∫
{X∗N≥λ}

XT dP∫
XN · 1{X∗N≥λ} dP ≥

∫
XT · 1{X∗N≥λ} dP

≥
∫
λ · 1{X∗N≥λ} dP

Where the last step follows from the definition of T .

Remark. Using the fact that P(X ≥ t) ≤ P(X2 ≥ t2) for any r.v. X and
t > 0, and the fact that S2

n is a submartingale if Sn is a martingale, this gives
Kolmogorov’s maximal inequality.

Theorem 4.31. (Doob’s L2 maximal inequality)

Let {Xn}n≥0 be a submartingale with E(X2
n) <∞ for all n.

For fixed N ≥ 0,

E
[
(max(X∗N , 0))2

]
≤ 4 · E

[
(X+

N )2
]

Remark. If {Yn}n≥0 is a martingale, then {Xn}n≥0 defined by Xn = |Yn| is a
positive submartingale and we have:

E
[
( max
0≤n≤N

|Yn|)2
]
≤ 4 · E(Y 2

N )
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Proof.

E
[
(max(X∗N , 0))2

]
= 2

∫ ∞
0

λ · P(X∗N ≥ λ) dλ

≤ 2

∫ ∞
0

E
[
XN · 1X∗N≥λ

]
dλ

(by sub-MG max’l inequality)

≤ 2

∫ ∞
0

E
[
X+
N · 1X∗N≥λ

]
dλ

= 2

∫ ∞
0

∫
Ω

X+
N · 1X∗N≥λ dP dλ

= 2

∫
Ω

X+
N

∫ ∞
0

1X∗N≥λ dλ dP

(by Fubini)

= 2

∫
Ω

X+
N ·max(X∗N , 0) dP

= 2E
[
X+
N ·max(X∗N , 0)

]
Apply Cauchy-Schwarz and rearrange.

We now introduce some motivation for the main result of this section–the upcrossing
lemma. Consider the following two sequences. How many times do they ”upcross”
a given threshold?

1. Xn = 1/n

Crosses only once for any threshold. Key observation: if a sequence converges,
then the number of upcrossings will always be finite.

2. X2n = 1/2n and X2n+1 = 1 + 1/2n

This sequence has two subsequences that converge to different limits. There
exist thresholds (e.g. 1) where the number of upcrossings is infinite.

Definition. (Setting for upcrossing lemma)

1. Let {Xn}n≥0 be a sequence of random variables.

2. Fix some a < b. Define a sequence of stopping times by:

S1 = inf{n ≥ 0 : Xn ≤ a}
T1 = inf{n ≥ 0 : Xn ≥ b}
S2 = inf{n > T1 : Xn ≤ a}
T2 = inf{n > S1 : Xn ≥ b}

...
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3. Define the number of upcrossings of [a, b] up until time n by:

Un[a, b] = max{i : Ti ≤ n}

Theorem 4.32. (Upcrossing lemma)

Suppose that {Xn}n≥0 is a submartingale. Then

E
[
Un[a, b]

]
≤ E[(Xn − a)+]− E[(X0 − a)+]

b− a

≤ EX+
n + |a|
b− a

Proof. Note that U(a, b) for a general subMG {Xn}n≥0 is equal to U(0, b−a)
for the shifted and truncated subMG {(Xn − a)+}n≥0. So WLOG assume
that Xn ≥ a for all n (i.e. XSi = a) and show:

E
[
Un[a, b]

]
≤ EXn − EX0

b− a

The general idea of the proof is to use the discrete stochastic integral with
two different predictable processes, to obtain two bounds which can then be
combined into our final bound:

1. ”Buy low, sell high:” Hn = 1S1<n≤T1
+ 1S2<n≤T2

+ . . .

{Hn}n≥1 is predictable because each indicator function can be rewritten as:
1{Si≤n−1} ·1{Ti≤n−1}c . Consider the discrete stochastic integral Yn = (HX)n:

Yn = (XT1 −XS1) + . . .+ (XTUn
−XSUn

) + (Xn −XSUn+1
) · 1n>SUn+1

=

Un∑
i=1

(XTi −XSi) + (Xn −XSUn+1
) · 1n>SUn+1

≥ (b− a) · Un + (Xn −XSUn+1
) · 1n>SUn+1

≥ (b− a) · Un (since Xn ≥ a = XSUn+1
)

Taking expectations, we have

EYn ≥ (b− a) · EUn

2. ”Buy high, sell low:” Kn = 1−Hn

Define {Zn}n≥0 by Zn = Xn−Yn. Then Zn = (KX)n. Note that {Kn}n≥1 is
predictable and bounded because {Hn}n≥1 is predictable and bounded. Thus
{Zn}n≥0 is a submartingale and:

EZn ≥ EZ0 = EX0 − EY0 = EX0

Therefore EXn − EYn ≥ EX0 and so EYn ≤ EXn − EX0.

Combining the two conclusions yields the desired result.
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4.7 Convergence theorems

The theorems in this section all deal with the general question of: If a sequence is
a martingale, then what conditions must be imposed to guarantee convergence?

Lemma 4.33. (Deterministic lemma)

Let {xn}n≥1 be a sequence of real numbers. Then {xn}n≥1 converges if and only if
the number of upcrossings U [a, b] is finite for any a < b.

Theorem 4.34. (Martingale convergence theorem)

Let {Xn}n≥0 be a submartingale. If supn EX+
n < ∞, then Xn

a.s.−→ X∞ with
E|X∞| <∞.

Proof. This proof has two parts. First we show that Xn
a.s.−→ X∞ by the

upcrossing lemma. Then we show that X∞ has finite expectation by an ap-
plication of Fatou’s lemma.

1. Note that by our deterministic lemma, if Xn does not converge to X a.s., then
there must exist some a < b ∈ Q such that U∞[a, b] = ∞. To show that this
is not possible, write:

{lim supXn = lim inf Xn} =
⋂
q>r

{U∞[r, q] <∞}, r, q ∈ Q

So fix r, q ∈ Q. To show U∞[r, q] < ∞, we show that E(U∞[r, q]) < ∞. To
show E(U∞[r, q]) < ∞, we show that E(Un[r, q]) < ∞ for fixed n and then
apply MCT.

By the upcrossing lemma,

E
(
Un[r, q]

)
≤ EX+

n + |r|
q − r

≤ supn EX+
n + |r|

q − r

Therefore by MCT,

E
(
U∞[r, q]

)
≤ supn EX+

n + |r|
q − r

<∞ by assumption

Thus since EX < ∞ ⇒ X < ∞ a.s., then U∞[r, q] < ∞ a.s. for any
q > r ∈ Q. Therefore:

P
(
{lim supXn = lim inf Xn}

)
= P

( ⋂
q>r

{U∞[r, q] <∞}
)

= 1

And we can define X∞(ω) = limn→∞Xn(ω).

2. Write E|X∞| = EX+
∞ + EX−∞. We show that EX+

∞ <∞ and EX−∞ <∞.
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First consider the positive part:

EX+
∞ =

∫
limX+

n dP

≤ lim inf

∫
X+
n dP (Fatou’s lemma)

≤ sup
n

EX+
n

<∞ (by assumption)

Now note that since {Xn}n≥0 is a submartingale, then EXn ≥ EX0 and:

EX−n = EX+
n − EXn

≤ EX+
n − EX0

≤ sup
n

EX+
n − EX0

Since the RHS is constant over n, then EX−n is bounded so supn EX−n < ∞.
Now following the above argument,

EX−∞ =

∫
limX+

n dP

≤ lim inf

∫
X−n dP

≤ sup
n

EX−n

<∞

Example. (Counterexample: simple random walk)

This example shows that the conditions of the above theorem do not guarantee
convergence in L1.

Let {ξi}i≥1 be an iid sequence such that

P(ξi = +1) =
1

2
, P(ξi = −1) =

1

2

Let a filtration {Fn} be given by Fn = σ(ξ1, . . . ξn) and define {Sn}n≥0 by:

S0 = 1, Sn = 1 +

n∑
i=1

ξi

Let N = inf{n ≥ 1 : Sn = 0} be a stopping time. Then since {Sn}n≥0 is a
martingale, the sequence {Xn}n≥0 defined by Xn = SN∧n is also a martingale.

Xn must converge to 0. To see this, note that if Xn = k 6= 0, then the next term in
the sequence is k± 1 so it does not converge. In other words, Xn can only converge
by having Sn hit 0, i.e. by having the process XN∧n stop at time N .

Now note that EXn = 1 for all n while X∞ = 0⇒ EX∞ = 0 as just shown, so that
convergence cannot occur in L1.
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Corollary 4.35. (Two easy corollaries of the MG convergence theorem)

1. If {Xn}n≥0 is a positive supermartingale, then there exists X∞ such that

Xn
a.s.−→ X∞, EX∞ ≤ limEXn

2. If {Xn}n≥0 is a non-negative martingale, then there exists X∞ such that

Xn
a.s.−→ X∞, EX∞ ≤ limEX0

Proof. For the first, note that {−Xn}n≥0 is a submartingale and

sup
n

E
[
(−Xn)+

]
= 0

Theorem 4.36. (Levy zero-one law)

Let {Fn}n≥0 be a filtration with F∞ = σ(∪∞j=1Fj). Let Z be a F∞-measurable
random variable with E|Z| <∞. Define Zn = E(Z | Fn). Then

Zn
a.s.−→ Z and Zn

L1

−→ Z

Remark. Why is this theorem called a ”zero-one” law? Because it can be
applied to the case when Z is an F∞-measurable indicator function 1A. Then
the sequence of conditional expectations E(1A | Fn) converges to a random
variable which can only take value 0 or 1.

Proof. The general outline of the proof is to show (1) Zn
a.s.−→ Z∞ and then

(2) Zn
L1

−→ Z, from which it follows that Z = Z∞ a.s.

1. We show that {Zn}n≥0 satisfies the conditions of the martingale convergence
theorem. Obviously, Zn is Fn-measurable and has finite expectation. Also,

E(Zn+1 | Fn) = E
[
E(Z | Fn+1) | Fn

]
= E(Z | Fn)

Also, note that

E(Z+
n ) ≤ E|Zn|

= E(|E(Z | Fn)|)
≤ E|Z|
<∞

Therefore we have that E(Z+
n ) is bounded and so supn E(Z+

n ) <∞. Therefore,
by the martingale convergence theorem, there exists X∞ such that

Zn
a.s.−→ Z∞

2. To show Zn
L1

−→ Z, we first prove a lemma:
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Lemma 4.37. Let Z be a F∞-measurable r.v. with E|Z| <∞. Then, given
any m ≥ 1, there exists 0 ≤ km < ∞ and an Fkm -measurable r.v. Ym such
that:

(a) E|Ykm | <∞

(b) E|Ykm − Z| ≤ 1
2m

Proof. (Sketch)

We show that this holds for Z = 1A, A ∈ F∞. Then it will hold for
simple functions, and then general measurable functions by MCT.

Define the set G by the set of all sets A ∈ F∞ such that, given any
m ≥ 1, there exists 0 ≤ km <∞ and Bm ∈ Fkm such that

E|1A − 1B | = P(A4Bm) ≤ 1

2m

Now note two facts:

(a) G contains ∪∞n=1Fn, a π-class.

To see this, let A ∈ FJ for some J . Then for any m ≥ 1, let km = J and
Bm = A.

(b) G is a λ-class.

Returning to the proof of the main result, we apply our lemma immediately:
given m ≥ 1, find 0 ≤ km <∞ and Ym ∈ Fkm such that E|Z − Ym| ≤ 2−m.

Let Xn = E(Z − Ym | Fn). For n > km, {Xn} is a martingale:

E(Z − Ym | Fn+1) = E
[
E(Z − Ym | Fn+1) | Fn

]
= E(Z − Ym | Fn)

Now note that:

E|Xn| = E
[
|E(Z − Ym | Fn)|

]
≤ E(|Z − Ym|)

≤ 1

2m
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Therefore it follows that:

E(|Z − Zn|) = E
[
|Z − E(Z | Fn)|

]
= E

[
|Z − Ym + Ym − E(Z | Fn)|

]
≤ E

[
|Z − Ym|+ |Ym − E(Z | Fn)|

]
(Triangle inequality)

= E(|Z − Ym|) + E
[
|Ym − E(Z | Fn)|

]
= E(|Z − Ym|) + E

[
|E(Z − Ym | Fn)|

]
(Ym is Fn-measurable)

≤ 1

2m−1

Therefore for any m ≥ 1, we have

lim sup
n→∞

E(|Z − Zn|) ≤
1

2m−1

Corollary 4.38. (Two easy corollaries of the Levy zero-one law)

1. Let Y1, Y2, . . . be a sequence of r.v.’s and let Fn = σ(Y1, Y2, . . .). If Z is a
F∞-measurable random variable with E|Z| <∞, then

E(Z |Y1, . . . , Yn)
a.s.−→ Z and E(Z |Y1, . . . , Yn)

L1

−→ Z

2. (Kolmogorov zero-one law)

Let Y1, Y2, . . . be a sequence of independent r.v.’s. Let A ∈ T , the tail σ-field
defined by T = ∩∞m=0σ(Ym+1, Ym+2, . . .).

For any given n, A is independent of Fn. Therefore

E(1A |Y1, . . . , Yn) = E1A ⇒ P(A |Y1, . . . , Yn) = P(A)

And therefore we have

P(A)
a.s.−→ 1A and P(A)

L1

−→ 1A

Theorem 4.39. (Convergence or divergence theorem)

Let {Xn}n≥0 be a martingale such that the ”step size” is bounded:

∃ k <∞ s.t. |Xn −Xn−1| < k ∀n a.s.

Define the sets C and D by:

C = {ω : Xn(ω)→ some finite value}
D = {ω : lim supXn(ω) =∞, lim inf Xn(ω) = −∞}

Then: P(C ∪D) = 1.
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Proof. Assume WLOG that X0 = 0 (otherwise consider {Xn−X0}). We only
need to show that C ⊃ Dc since then P(C ∪D) ≥ P(Dc ∪D) = 1.

We first break the proof into two parts. First, we show that the assumptions
imply that the process does not take ”too large” negative values, and therefore

{Xn → some finite value} ⊃ {inf Xn > −∞}

Then we show that the assumptions imply that the process does not take ”too
large” positive values, and therefore

{Xn → some finite value} ⊃ {supXn > −∞}

1. The process does not take ”too large” negative values:

Fix some L ≥ 1. Define the stopping time TL = inf{n ≥ 0 : Xn ≤ −L}. Note
two facts about the stopped process {XTL∧n}n≥0:

(a) XTL∧n ≥ −(L+ k) by definition of TL.

(b) {XTL∧n}n≥0 is a martingale, so {XTL∧n + (L+ k)}n≥0 is a non-negative
martingale.

Therefore by the martingale convergence theorem,

XTL∧n + (L+ k)
a.s.−→ something finite

In particular, if TL = ∞, i.e. Xn > −L, then the convergence to a finite r.v.
still holds. And since our choice of L ≥ 1 was arbitrary,

{ω : Xn(ω)→ something finite} ⊃ {TL =∞}, ∀L ≥ 1

= {Xn > −L ∀n}, ∀L ≥ 1

⊃ ∪∞L=1{Xn > −L ∀n}
= {inf Xn > −∞}

2. The process does not take ”too large” positive values:

Fix some L ≥ 1. Follow the same argument above using the stopping time
TL = inf{n ≥ 0 : Xn ≥ L} and noting that XTL∧n ≤ (L+ k).

Therefore we have shown:

C = {ω : Xn(ω)→ finite} ⊃ B = {supXn <∞} ∪ {inf Xn > −∞}

And since sups are decreasing and infs are increasing,

B ⊃ {lim supXn <∞ or lim inf Xn > −∞} = Dc

Theorem 4.40. (Conditional Borel-Cantelli lemmas)

Let {An}n≥1 be a sequence of events with An ∈ Fn for all n. Define
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1. Bn = ∪∞m=nAm

2. B = An i.o. = ∩∞n=1 ∪∞m=n Am = limBn

Then the following are true:

1. P(Bn+1 | Fn)
a.s.−→ 1B

2. Ani.o. = {ω :
∑∞
n=1 P(An | Fn−1) =∞}

Proof. We prove the two parts separately:

1. (of P(Bn+1 | Fn)
a.s.−→ 1B)

Fix n > k. Then 1B ≤ 1Bn+1
≤ 1Bk and:

E(1B | Fn) ≤ E(1Bn+1
| Fn) ≤ E(1Bk | Fn)

Thus, rewriting, we have

P(B | Fn) ≤ P(Bn+1 | Fn) ≤ P(Bk | Fn)

Taking lim inf and lim sup over n and applying the Levy zero-one law to the
leftmost and rightmost term, we have:

1B ≤ lim inf P(Bn+1 | Fn) ≤ lim supP(Bn+1 | Fn) ≤ 1Bk

Letting k →∞, then 1Bk → 1B and we obtain:

1B ≤ lim inf P(Bn+1 | Fn) ≤ lim supP(Bn+1 | Fn) ≤ 1B

2. (of Ani.o. = {ω :
∑∞
n=1 P(An | Fn−1) =∞})

Define the sequence {Xn}n≥0 by X0 = 0 and:

Xn =

n∑
m=1

[
1Am − P(Am | Fm−1)

]
Xn+1 = Xn +

[
1An+1 − P(An+1 | Fn)

]
Note two facts about this sequence:

(a) {Xn}n≥0 is a martingale:

E(Xn+1 | Fn) = Xn + E(1An+1
| Fn)− P(An+1 | Fn) = Xn

(b) {Xn}n≥0 has bounded increments:∣∣∣Xn+1 −Xn

∣∣∣ =
∣∣∣1An+1

− P(An+1 | Fn)
∣∣∣ ≤ 1

Therefore, by the convergence or divergence theorem, only two things can
happen:
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(a) C = {Xn converges to some finite number}

(b) D = {lim supXn =∞, lim inf Xn = −∞}

Now note that we can write:

Xn =

n∑
m=1

1Am −
n∑

m=1

P(Am | Fm−1) , A−B

where An i.o. = {
∑∞
m=1 1Am =∞} = A.

The proof is completed by noting that if Xn converges to some finite value (i.e.
ω ∈ C), then A = ∞ if and only if B = ∞; similarly, if Xn has lim sup = ∞
and lim inf = −∞ (i.e. ω ∈ D), then it must be true that A =∞ and B =∞.

Theorem 4.41. (Bounded OST)

Let {Xn}n≥0 be a submartingale and let T <∞ be a stopping time. If:

1. ET <∞

2. E(|∆X
n | | Fn−1) ≤ B on {T ≥ n}

Then:
E(XT | F0) ≥ X0 ⇒ EXT ≥ EX0

Proof. We check the conditions for showing that E(|XT −XT∧k|)→ 0.

1. E(|XT |) <∞

Writing XT = X0 +
∑T
m=1 ∆X

m, we have

|XT | = |X0 +

T∑
m=1

∆X
m|

≤ |X0|+
T∑

m=1

|∆X
m|

= |X0|+
∞∑
m=1

|∆X
m| · 1m≤T

, Y
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Taking expectations, we have

E|XT | ≤ E|X0|+
∞∑
m=1

E
(
|∆X

m| · 1m≤T
)

≤ E|X0|+
∞∑
m=1

E
[
E
(
|∆X

m| · 1m≤T | Fm−1

)]
≤ E|X0|+

∞∑
m=1

E
[
1m≤T · E

(
|∆X

m| | Fm−1

)]
≤ E|X0|+B ·

∞∑
m=1

P(T ≥ m)

(by assumption)

2. E(|Xn| · 1T≥n)→ 0

Note that |Xn| · 1T≥n ≤ Y · 1T≥n. Therefore, it is sufficient to show:

E(Y · 1T≥n)→ 0

To see this, note that T < ∞ and Y · 1T≥n
a.s.−→ 0. Establish the fact that

EY <∞, and then apply DCT to the sequence Y · 1T≥n.

Theorem 4.42. (Generalization of Wald’s lemma)

Let {ξi}i≥1 be an independent sequence such that

1. E|ξi| ≤ k ∀i

2. µ1 ≤ Eξi ≤ µ2 ∀i

Let T be a stopping time with ET <∞ and let the filtration {Fn}n≥0 be given by
Fn = σ(ξ1, . . . , ξn). Then:

ET · µ1 ≤ EST ≤ ET · µ2

Remark. Compare this to the non-OST result:

nµ1 ≤ ESn ≤ nµ2

Proof. Define the sequence {Xn}n≥0 by X0 = 0 and Xn = Sn − nµ1. Note
that {Xn}n≥0 is a submartingale:

E(Xn+1 | Fn) = Xn + E(ξn+1 − µ1 | Fn)

= Xn + E(ξn+1 − µ1) (by independence)

≥ Xn

To apply the bounded OST, we need to check the step size condition:

E
[
|Xn −Xn−1|

∣∣∣ Fn−1

]
= E

[
|ξn − µ1|

∣∣∣ Fn−1

]
= E|ξn − µ1|
≤ E|ξn|+ |µ1|
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Thus each step is bounded by k + |µ1|. Therefore by OST,

EXT ≥ EX0 ⇒ E(ST − Tµ1) ≥ 0

To show the upper bound, note that {Yn}n≥0 defined by Yn = Sn − nµ2 is a
supermartingale, so that {−Yn}n≥0 is a submartingale. Then follow the same
argument as above.

4.8 Boundary crossings and Azuma-Hoeffding

This section is motivated by a class of boundary crossing questions: given a random
variable or process, what is the probability that it will cross a certain boundary?

First consider studying whether or not a boundary crossing will exist at all (for the
case of a simple mean zero iid process):

Theorem 4.43. (Existence of a boundary crossing)

Let {ξi}n≥1 be an iid sequence. Assume Eξi = 0 and fix a, b > 0. What is the
probability that there exists some n such that Sn ≥ a+ bn?

P(∃n ≥ 0 : Sn ≥ a+ bn) ≤ exp(−θa)

where θ > 0 satisfies E(eθξi) = eθb.

Proof. Note that Sn − bn =
∑n
i=1(ξi − b), so:

P
(
∃n : Sn ≥ a+ bn

)
= P

(
∃n :

n∑
i=1

(ξi − b) ≥ a
)

Let Ŝn =
∑n
i=1(ξi − b). Then for any θ > 0,

P(∃n : Ŝn ≥ a) = P(∃n : exp(θŜn) ≥ exp(θa))

Now define the sequence {Xn}n≥0 by Xn = eθŜn and X0 = 1. Note:

E
[
Xn+1 | Fn

]
= eθŜn · E

[
eθ(ξn+1−b) | Fn

]
= eθŜn · E(eθξn+1)

eθb
(by independence)

= Xn (by assumption)

Therefore {Xn}n≥0 is a positive martingale. Thus by the supermartingale
maximal inequality,

λ · P
(

sup
n≥0

Xn ≥ λ
)
≤ EX0

Letting λ = eθa and noting that, in general, P(∃n : Xn ≥ a) = P(supXn ≥ a)
gives the desired result.
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Now suppose are interested in the first time a process escapes out of some fixed
interval (a, b). The main question of this section is: What is the probability
that the first crossing will be to above/below?

First, we prove a theorem which gives us the crucial result regarding ST to allow us
to calculate these bounds. Then, we prove a related theorem that provides sufficient
conditions for the conditions of the first theorem to hold.

Theorem 4.44. Let {ξi} be iid and let T be a stopping time with ET <∞. Also
let a filtration {Fn}n≥0 be given by Fn = σ(ξ1, . . . , ξn). Suppose

1. ∃ θ > 0 such that E(eθξi) = 1 for all i

2. for n < T , Sn ≤ B

Then E(eθST ) = 1.

Proof. Define the sequence {Xn}n≥0 by X0 = 1 and Xn = eθSn . Note

E(Xn+1 | Fn) = eθSn · E(eθξn+1 | Fn) = eθSn · E(eθξn+1)

Thus {Xn}n≥0 is a martingale. If we show that the assumption of the bounded
OST hold, then we will have EXT = EX0 = 1 and we are done.

By assumption, ET <∞. To show the other condition, note:

E(|∆X
n |
∣∣Fn−1) = E(|eθSn − eθSn−1 |

∣∣Fn−1)

= eθSn−1 · E(|eθξn − 1|
∣∣Fn−1)

≤ eθSn−1 · |Eeθξn + 1| (by Triangle ineq.)

≤ 2eθSn−1

Now note that by assumption, for n < T (i.e. n − 1 ≤ T ), eθSn−1 ≤ eθB .
Therefore

E(|∆X
n |
∣∣Fn−1) ≤ 2eθB for n ≤ T

So the OST holds and we are done.

This next theorem provides a set of convenient sufficient conditions to allow us to
satisfy the conditions of the first theorem:

Theorem 4.45. Suppose {ξi} are iid with Eξi < 0, P(ξi > 0) > 0, and |ξi| ≤ L.

Fix a < 0 < b. Let T = inf{n ≥ 0 : Sn ≤ a or Sn ≥ b}. Then:

1. ET <∞

2. ∃θ > 0 such that Eeθξi = 1

Proof. We prove (1) first and then (2) second:

1. First note that T <∞ because Sn/n
a.s.−→ Eξi < 0.

Then using T ∧ n so that E(T ∧ n) <∞, Wald’s lemma gives

EST∧n = Eξi · E(T ∧ n)
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Furthermore, since |ξi| ≤ L, then |ST∧n| ≤ |a|+|b|+L for all n ≥ 1. Therefore,
ST∧n is bounded, so by DCT we have EST∧n → EST <∞. Furthermore, by
MCT, we have E(T ∧ n) → ET . Plugging into the Wald’s lemma equation,
we obtain ET <∞.

2. Define φ(θ) = Eeθξi . Note that φ′(θ)|θ=0 = Eξi < 0 with φ(0) = 1, so that φ
is initially decreasing for θ > 0.

However, since P(ξi > 0) > 0, then φ(θ) = Eeθξi → ∞ as θ → ∞. Therefore
φ must cross 1 from below at some θ > 0.

How to calculate the actual bounds:

Since |ξi| ≤ L, note that:

1. If ST crosses to above at b, then its minimum value is ST = b and its maximum
value is ST = b+ L

2. If ST crosses to below at a, then its minimum value is ST = a − L and its
maximum value is ST = a

Since EeθST = 1, then

1. Using the maximum values, P(ST ≥ b) · eθ(b+L) + [1− P(ST ≥ b)] · eθa ≥ 1

2. Using the minimum values, P(ST ≥ b) · eθb + [1− P(ST ≥ b)] · eθ(a−L) ≥ 1

Solve for P(ST ≥ b) in both to get upper and lower bounds.

Example. (Asymmetric simple random walk)

Consider the process {ξi}i≥1 with P(ξi = 1) = p and P(ξi = −1) = 1− p.

Let p < 1/2 so that Eξi < 0 and |ξi| ≤ 1. Let T = inf{n ≥ 0 : Sn ≤ a; or Sn ≥ b}
with a < 0 < b, a, b ∈ Z so that either ST = a or ST = b.

Calculating P(ST = b) directly is hard, but it is easy to check that the conditions of
the previous theorem are satisfied, so that we can use the OST-derived result from
the first theorem: EeθST = 1.

1. Step 1: Get θ > 0 such that Eeθξi = 1.

Rewriting the condition Eeθξi = 1, we have

eθp+ e−θ(1− p) = 1 ⇒ θ = log

(
1− p
p

)
2. Step 2: Apply the OST result

Using the fact that either ST = a or ST = b, we have

EeθST = 1

P(ST = b)eθb + (1− P(ST = b))eθa = 1

P(ST = b)

(
1− p
p

)b
+ (1− P(ST = b))

(
1− p
p

)a
= 1
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And then solve the equation for P(ST = b).

A powerful extension of this idea of boundary crossings is the Azuma-Hoeffding
inequality, which gives an exponential bound for the probability of a martingale
with bounded differences exceeding some interval.

Theorem 4.46. (Azuma-Hoeffding)

Let Sn =
∑n
i=1Xi, and S0 = 0. Let {Fn} be defined by Fn = σ(X1, . . . , Xn).

If {Sn}n≥0 is a martingale and |Xn| ≤ 1 for all n, then for any λ > 0,

P(Sn ≥ λ
√
n) ≤ exp

(
−λ2

2

)
Applying this again to the martingale {−Sn}n≥0, we obtain

P(|Sn| ≥ λ
√
n) ≤ 2 · exp

(
−λ2

2

)
Remark. Since Sn =

∑n
i=1Xi, the condition that |Xn| ≤ 1 for all n is equiv-

alent to the condition that |Sn − Sn−1| ≤ 1 for all n.

Lemma 4.47. If Y is a random variable with EY = 0 and |Y | ≤ 1, then

EeαY ≤ exp

(
α2

2

)
for all α > 0

Proof. Define the function f(Y ) = eαY for −1 ≤ Y ≤ 1. Also, let the function
L(Y ) for −1 ≤ Y ≤ 1 be the straight line connecting f(−1) and f(1).

Note f is convex, then f(Y ) ≤ L(Y ) for |Y | ≤ 1. Also, L(0) = 1
2 (e−α + eα).

Therefore:

Ef(Y ) ≤ EL(Y ) = L(E(Y )) = L(0) =
1

2
(e−α + eα)

The proof is completed by noting that 1
2 (e−α+eα) ≤ eα2/2 for all α > 0 (treat

both as a function of α and take derivatives).

Proof. (of Azuma-Hoeffding)

Note that |Xn| ≤ 1 and EXn = 0 for all n since S0 = 0 and {Sn}n≥0 is a
martingale. Thus our previous lemma applies.

The idea is to expand Sn using conditional expectation, and then use inde-
pendence to apply the lemma:

E
(
eαSn | Fn−1

)
= eαSn−1 · E

(
eαXn | Fn−1

)
= eαSn−1 · EeαXn

≤ eαSn−1 · eα
2/2
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Taking expectations of both sides, we obtain:

EeαSn ≤ eα
2/2 · EeαSn−1

Expanding EeαSn−1 using conditional expectation as above and repeating n−1
times, we finally obtain:

EeαSn ≤ e(nα2)/2

Now note that

P(Sn ≥ λ
√
n) = P(eαSn ≥ eαλ

√
n) (for α > 0)

≤ e−αλ
√
n · EeαSn (by Markov)

≤ e−αλ
√
n · e(nα2)/2

= exp

(
−αλ

√
n+

nα2

2

)
Optimizing over α > 0 gives α = λ/

√
n.

Corollary 4.48. (Alternate statement)

With the same setup of the Azuma-Hoeffding inequality,

P(Sn ≥ λ) ≤ exp

(
−λ2

2n

)
Proof. Following the above proof, we again obtain:

EeαSn ≤ e(nα2)/2

Now using Markov in the same way as above, we have:

P(Sn ≥ λ) = P(eαSn ≥ eαλ) (for α > 0)

≤ e−αλ · EeαSn (by Markov)

≤ e−αλ · e(nα2)/2

= exp

(
−αλ+

nα2

2

)
Optmizing over α > 0 gives α = λ/n.

The Azume-Hoeffding inequality immediately suggests a useful technique for eval-
uating the probability of an event of the form |Z − EZ|:

Theorem 4.49. (Method of bounded differences)

Suppose ξ1, . . . , ξn are independent. Let Z = f(ξ1, . . . , xn). Also, assume that Z
does not change too much if any of the ξi’s are changed, i.e.

|f(ξ1, . . . , ξk, . . . , ξn)− f(ξ1, . . . , ξ
′
k, . . . , ξn)| ≤ 1
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Where ξk and ξ′k are two realizations of the same random variable. Then for λ > 0,

P(|Z − EZ| ≥ λ
√
n) ≤ 2 · exp

(
−λ

2

2

)
Remark. This proof assumes that the absolute difference is bounded by 1.
However, the result still holds if the difference is bounded by another constant
c. See the generalization of the Azuma-Hoeffding inequality above.

Proof. The proof is by the Azuma-Hoeffding inequality, using the trick of
independent copies.

Define Sm = E(Z | ξ1, . . . , ξm)− EZ. Note that:

1. {Sm}m≥0 is a martingale.

2. If m = n, then Sm = Sn = Z − EZ.

Therefore if we can show that |Sm − Sm−1| ≤ 1, then the result will follow
immediately from Azuma-Hoeffding.

Let ξ′1, ξ
′
2, . . . , ξ

′
n be independent copies of the original ξi’s. Note that:

Sm − Sm−1 =

= E
[
f(ξ1, . . . , ξn) | ξ1, . . . , ξm

]
− E

[
f(ξ1, . . . , ξn) | ξ1, . . . , ξm−1

]
We would like to use linearity of expectation here to combine the two terms,
but we cannot because we are conditioning on different sub-σ-algebras. To
remedy this, note that, since ξm ⊥ ξ′m,

E
[
f(ξ1, . . . , ξm, . . . , ξn) | ξ1, . . . , ξm−1

]
=

= E
[
f(ξ1, . . . , ξ

′
m, . . . , ξn) | ξ1, . . . , ξm−1, ξm

]
Therefore we have:

|Sm − Sm−1| =

=
∣∣∣E[f(ξ1, . . . , ξm, . . . , ξn)− f(ξ1, . . . , ξ

′
m, . . . , ξn) | ξ1, . . . , ξm

] ∣∣∣
≤ E

[∣∣f(ξ1, . . . , ξm, . . . , ξn)− f(ξ1, . . . , ξ
′
m, . . . , ξn)

∣∣ | ξ1, . . . , ξm]
≤ E

[
1 | ξ1, . . . , ξm

]

4.9 Uniform integrability and branching processes

Question: if we know that Xn
P−→ X, then under what conditions can we also

conclude that Xn
L1

−→ X, E|Xn −X| → 0?
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Definition. (Uniformly integrable)

A family of random variables {Yα : α ∈ I} is uniformly integrable if

lim
b→∞

sup
α∈I

E
[
|Yα| · 1|Yα|≥b

]
= 0

Remark. Why is this property called ”uniform integrability?” Because for a
single random variable X (on a finite measure space),

lim
b→∞

E
[
|X| · 1|X|≥b

]
= 0 ⇐⇒ X ∈ L1

This can be easily shown using DCT and by splitting the expression E|X| into
two integrals over disjoint regions.

Theorem 4.50. (Some properties of UI)

1. If supα E(|Yα|q) <∞ for some q > 1, then {Yα : α ∈ I} are UI.

2. If {Yα : α ∈ I} are UI, then supα E(|Yα|) <∞.

3. If Yn
P−→ Y and {Yn : n ≥ 1} are UI, then Yn

L1

−→ Y also.

4. If Yn
d−→ Y and {Yn : n ≥ 1} are UI, then Yn

L1

−→ Y also.

Remark. Note that for (3), the random variables must be defined on the same
probability space in order for convergence in P to make sense. However, for
(4), the random variables may be defined on different probability spaces.

Lemma 4.51. (An ”absolute continuity” property)

Let X ∈ L1(Ω,F ,P). Then given ε > 0, there exists δ > 0 such that for F ∈ F ,

P(F ) < δ ⇒ E(|X| · 1F ) < ε

Remark. This result generalizes to arbitrary measurable spaces by monotone
convergence (see Leadbetter notes).

Proof. Suppose not. Then for some ε0 > 0, we can find a sequence {Fn} of
elements of F such that for all n,

P(Fn) <
1

2n
and E(|X| · 1Fn) ≥ ε0

Define H = lim supFn. Then Borel-Cantelli gives P(H) = 0 but (reverse)
Fatou gives E(|X| · 1H) ≥ ε0, a contradiction.

Theorem 4.52. Suppose X is integrable. Then {E(X | G) : G ⊂ F is a sub-σ-field}
is UI.

Proof. Let E(X | G) be an arbitrary element of the above set.

Fix ε > 0. By the above lemma, there exists δ > 0 such that for F ∈ F ,

P(F ) < δ ⇒ E(|X| · 1F ) < ε
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By conditional Jensen and definition of CE, we have:

E
[
|E(X | G)| · 1|E(X | G)|>M

]
≤ E

[
|E(X | G)| · 1E(|X| | G)>M

]
≤ E

[
E(|X| | G) · 1E(|X| | G)>M

]
= E

[
|X| · 1E(|X| | G)>M

]
Where the last step is because {E(|X| | G) > M} ∈ G. Now we show that
by making M large enough, we may make the measure of the set we are
integrating over < δ. By Chebyshev’s inequality,

P(E(|X| | G) > M) ≤ E[E(|X| | G)]/M = E|X|/M

X is integrable, so choosing M > 0 large enough makes E|X|/M < δ. There-
fore by our lemma, we have

E
[
|X| · 1E(|X| | G)>M0

]
< ε

Therefore {E(X |G) : G ⊂ F is a sub-σ-field} is UI.

Corollary 4.53. (Uniform integrability of martingales)

If {Xn}n≥0 is a submartingale and supn E(|Xn|q) <∞ for some q > 1 (i.e. {Xn}n≥0

is UI), then there exists X such that Xn
a.s.−→ X and Xn

L1

−→ X.

Proof. Since supn E(|Xn|q) < ∞ for q > 1, then supn E|Xn| < ∞ as well.
Therefore by the martingale convergence theorem, ∃X with EX < ∞ such

that Xn
a.s.−→ X. Then since {Xn}n≥0 is UI, Xn

L1

−→ X also.

Definition. (Galton-Watson branching process)

Define the sequence of iid random variables

{ξni : i ≥ 1, n ≥ 1}, Eξni = µ <∞, Var(ξni ) <∞

A Galton-Watson branching process {Zn} is defined by Z0 = 1 and the recur-
rence relation:

Zn+1 =

Zn∑
i=1

ξni

This is a process that evolves in discrete time. At generation n, a random number
of children are birthed which then go on to make up the n+ 1th generation, where
the # of births is iid.

Theorem 4.54. (Extinction probability)

Let P = P(Zn = 0 eventually). What is P? Three cases:

1. µ < 1. Then P = 1.
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2. µ = 1. Then P = 1 also.

3. What about µ > 1? Answer: P < 1.

Proof. It is easily shown (HW) that the sequence {Zn/µn} is a positive mar-
tingale. Thus

sup
n

E

[(
Zn
µn

)+
]

= sup
n

E
(
Zn
µn

)
= 1 <∞

Therefore by the MG convergence theorem, ∃W with EW <∞ such that

Zn
µn

a.s.−→W

If we can show the convergence in L1, then limE(Zn/µ
n) = EW = 1. It

follows then that P(W = 0) < 1, and since W = limZn/µ
n a.s., then P < 1.

So to show Zn/µ
n L1

−→ W , we only need to show {Zn/µn}n≥0 is UI. To
show {Zn/µn}n≥0 is UI, it is sufficient to show that supn E((Zn/µ

n)2) <
∞. But since E(Zn/µ

n) = 1 for all n ≥ 0, then it suffices to show that
supn Var(Zn/µ

n) <∞.

Let Fn be the information known up to time n:

Fn = σ
(
{ξmi : i ≥ 1,m ≤ n− 1}

)
Where m only runs up to n− 1 since Zn =

∑Zn−1

i=1 ξn−1
i . Now note that:

Var(Zn) = E
[
Var(Zn | Fn−1)

]
+ Var

[
E(Zn | Fn−1)

]
Although Zn is independent of Fn−1, once we condition on Fn−1 we know the

value of Zn−1. And since Zn =
∑Zn−1

i=1 ξn−1
i as noted above, then we have:

1. Var(Zn | Fn−1) = Varξi · Zn−1

2. E(Zn | Fn−1) = µ · Zn−1

3. Var(E(Zn | Fn−1)) = Var(µ · Zn−1) = µ2 ·Var(Zn−1)
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Thus finally, we have:

Var(Zn) = σ2 · µn−1 + µ2 ·Var(Zn−1)

Var

(
Zn
µn

)
=

1

µ2n

[
σ2 · µn−1 + µ2 ·Var(Zn−1)

]
=

σ2

µn+1
+ Var

(
Zn−1

µn−1

)
...

= σ2 ·
n+1∑
j=2

1

µj

≤ σ2
∞∑
j=1

1

µj

<∞ (since µ > 1)

Therefore supn Var(Zn/µ
n) <∞ and so Zn/µ

n is UI.

82



5 Weak convergence

5.1 Basic properties, Scheffe’s theorem

Recall that if µ is a probability measure on (R, B(R)), then the CDF of µ is:

Fµ(x) = µ((−∞, x])

Remark. In this notation, µ is actually the induced probability measure of
some unspecified random variable X defined on some unspecified probability
space (Ω,F ,P):

µ(B) = P(ω ∈ Ω : X(ω) ∈ B), B ∈ B(R)

Definition. (Continuity point)

We call x a continuity point of Fµ if:

Fµ(x) = Fµ(x−) = lim
y↑x

Fµ(y)

Remark. Two observations:

1. This left-continuous condition is sufficient since all distribution functions are
right-continuous.

2. If x is a continuity point, then

µ({x}) = Fµ(x)− Fµ(x−) = 0

Theorem 5.1. (Convergence in distribution)

Let µ and {µn}n≥1 be (induced) probability measures on (R, B(R)). TFAE:

1. For all continuity points x of Fµ, Fµn(x)→ Fµ(x)

2. For all bounded continuous functions g(·),∫
g(x) dµn →

∫
f(x) dµ

i.e. if Xn ∼ µn and X ∼ µ, then E(g(Xn))→ E(g(X)).

3. There exists (Ω,F ,P) and random variables X̂n : Ω→ R and X̂ : Ω→ R with

X̂n ∼ µn and X̂ ∼ µ such that X̂n
a.s.−→ X̂.

Proof. (3)⇒ (2):

If g is continuous, then by the continuous mapping theorem

g(X̂n(ω))→ g(X̂(ω)) for a.e. ω

Now g is bounded, so there exists M such that |g(X)| ≤M for all x. Therefore
by DCT,

E(g(X̂n))→ E(g(X̂))∫
R
g(x) dµn(x)→

∫
R
g(x) dµ(x) (∆ of measure)
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(2)⇒ (1):

Fix some x. Note that (1) is equivalent to (2) with g(y) = 1y≤x. However,
this function is not continuous, so...

Upper bound: Let gj(y) be a function which takes value 1 for all y ≤ x, 0
for all y > x + 1

j , and which decreases smoothly from 1 to 0 between x and

x+ 1
j . Thus gj(y) is continuous and gj(y) ≥ 1y≤x for all x. So:

Fµn(x) =

∫
R
1y≤x dµn(y)

≤
∫
R
gj(y) dµn(y)

→
∫
R
gj(y) dµ(y) as n→∞

≤ Fµ(x+ 1/j)

Therefore, lim supn Fµn(x) ≤ Fµ(x+ 1/j) for all j ≥ 1. Thus, sending j →∞
and noting that Fµ is right-continuous, we obtain:

lim sup
n

Fµn(x) ≤ Fµ(x)

Lower bound: Let hj(y) be a function which takes value 1 for all y ≤ x− 1
j ,

0 for all y > x, and which decreases smoothly from 1 to 0 between x− 1
j and

x. Thus hj(y) is continuous and hj(y) ≤ 1y≤x for all x. So:

Fµn(x) =

∫
R
1y≤x dµn(y)

≥
∫
R
hj(y) dµn(y)

→
∫
R
hj(y) dµ(y) as n→∞

≥ Fµ(x− 1/j)

Therefore, lim infn Fµn(x) ≤ Fµ(x− 1/j) for all j ≥ 1. Thus, sending j →∞,
we obtain:

lim inf
n

Fµn(x) ≥ Fµ(x)

only if x is a continuous point of Fµ. Thus, combining the two bounds, we
have Fµn(x)→ Fµ(x) if x is a continuous point of Fµ.

(1)⇒ (2)

Fill this in later (see previous statement).

Example. (Showing
d−→ directly)
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LetXn have a Uniform{1, 2, . . . , n} distribution. We show that Xnn
d−→ Uniform(0, 1).

P
(
Xn

n
≤ x

)
= P(Xn ≤ bnxc)

=
bnxc
n

→ x as n→∞

Example. (Showing
d−→ directly)

Let Xθ ∼ Geometric(θ), i.e. P(Xθ > i) = (1− θ)i for i = 1, 2, . . .

We show that θ ·Xθ
d−→ exp(1) as θ → 0:

P(θ ·Xθ ≤ x) = P
(
Xθ ≤

⌊x
θ

⌋)
= 1− P

(
Xθ >

⌊x
θ

⌋)
= 1− (1− θ)b

x
θ c

→ 1− e−x

Corollary 5.2. (Skorohod corollary 1: continuous mapping theorem)

Fix a function g. Define the set Dg = {x : g is not continuous at x}.

Suppose Xn
d−→ X and P(X ∈ Dg) = 0. Then g(Xn)

d−→ g(X).

Proof. Since Xn
d−→ X, there exist X̂n

d
=Xn and X̂

d
=X such that X̂n

a.s.−→ X̂.
Furthermore, since P(X̂ ∈ Dg) = 0, then g(X̂n)

a.s.−→ g(X̂).

Thus g(X̂n)
d−→ g(X̂) as well. Note g(X̂n)

d
= g(Xn) and g(X̂)

d
= g(X).

Corollary 5.3. (Skorohod corollary 2: expectation bounds)

Let Xn
d−→ X and g : R→ [0,∞) be continuous. Then Eg(X) ≤ lim inf Eg(Xn).

Proof. Since Xn
d−→ X, there exist X̂n

d
=Xn and X̂

d
=X such that X̂n

a.s.−→ X̂.
Since g is continuous, g(X̂n)

a.s.−→ g(X̂). By Fatou’s lemma,

Eg(X̂) ≤ lim inf Eg(X̂n)

Note g(X̂n)
d
= g(Xn) and g(X̂)

d
= g(X).

Theorem 5.4. (Scheffe’s theorem)

Let (S,S, θ) be a measure space and let {hn} : S → [0,∞) and h : S → [0,∞) be
S-measurable. Suppose:

1.
∫
S
hn(s) θ(ds) =

∫
S
h(s) θ(ds) = 1
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2. hn(s)→ h(s) for a.e.(θ) s

Then
∫
|hn(s)− h(s)| θ(ds)→ 0.

Proof. By assumption, we have:

0 =

∫
S

[
h(s)− hn(s)

]
θ(ds)

=

∫
S

[
h(s)− hn(s)

]+
θ(ds)−

∫
S

[
h(s)− hn(s)

]−
θ(ds)

Thus the integral of the positive part is equal to the integral of the negative
part, so we can write:∫

S

∣∣∣h(s)− hn(s)
∣∣∣ θ(ds) = 2

∫
S

[
h(s)− hn(s)

]+
θ(ds)

Now since h and hn take only non-negative values, then

0 ≤
[
h(s)− hn(s)

]+
≤ h(s)

And since
∫
h(s) = 1 < ∞, we can apply dominated convergence to obtain

the result.

Theorem 5.5. Suppose {Xn}, X are integer-valued random variables. TFAE:

1. Xn
d−→ X

2. P(Xn = i)→ P(X = i) ∀i ∈ Z

3.
∑
i∈Z

∣∣∣P(Xn = i)− P(X = i)
∣∣∣→ 0

Proof. (1)⇒ (2)

Since {Xn} and X are integer-valued, then they are not continuous at any
i ∈ Z. But they are continuous at i+ 1/2. Thus:

P(Xn = i) = P(Xn ≤ i+ 1/2)− P(Xn ≤ i− 1/2)

→ P(X ≤ i+ 1/2)− P(X ≤ i− 1/2)

= P(X = i)

(2)⇒ (3)

Consider the measure space (Z, 2Z, θ), where θ is the counting measure. Define
the functions {hn} : Z→ [0,∞) and h : Z→ [0,∞) by:

hn(i) = P(Xn = i), h(i) = P(X = i)

Then apply Scheffe’s theorem.

(3)⇒ (1)
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Fix some x /∈ Z so that x is a continuous point. Then:∣∣∣P(Xn ≤ x)− P(X ≤ x)
∣∣∣ =

∣∣∣∑
i≤x

P(Xn = i)−
∑
i≤x

P(X = i)
∣∣∣

≤
∑
i≤x

∣∣∣P(Xn = i)− P(X = i)
∣∣∣

≤
∑
i∈Z

∣∣∣P(Xn = i)− P(X = i)
∣∣∣

→ 0 by assumption

Example. Binomial(n, λ/n) → Poisson(λ)

Theorem 5.6. Let λ be the Lebesgue measure on B(R) and suppose {fn}, f are
pdfs on (R, B(R)): ∫

R
fn dλ(x) =

∫
R
f dλ(x) = 1

Define {µn} and µ, measures on (R, B(R)) by:

µn(B) =

∫
B

fn dλ(x) and µ(B) =

∫
B

f dλ(x)

If fn(x)→ f(x) for a.e. x, then µn
d−→ µ.

Proof. By Scheffe’s theorem, we have L1 convergence of fn to f :∫
R
|fn(x)− f(x)|dλ(x)→ 0

So note that:∣∣P(Xn ≤ x)− P(X ≤ x)
∣∣ =

∣∣∣ ∫ x

−∞
fn(y) dλ(y)−

∫ x

−∞
f(y) dλ(y)

∣∣∣
≤
∫ x

−∞
|fn(y)− f(y)|dλ(y)

≤
∫
R
|fn(y)− f(y)|dλ(y)

5.2 Helly’s theorem

Definition. (Tightness)

We say that a family of random variables {Xα : α ∈ I} is tight if:

lim
b→∞

sup
α

P (|Xα| > b) = 0
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Remark. Two observations:

1. We can also say that the corresponding family of probability measures {µα :
α ∈ I} (on (R, B(R))) are tight if:

lim
b→∞

sup
α
µn([−b, b]) = 0

2. Compare this to the definition of uniform integrability:

lim
b→∞

sup
α

E
[
|Xα| · 1|Xα|>b

]
= 0

Theorem 5.7. (Equivalent definition of tightness)

The previous definition is equivalent to the following definition:

A family of probability measures {µα : α ∈ I} is tight if, for every ε > 0, there
exists a compact interval [a, b] such that µα([a, b]) > 1− ε for all α.

Proof. Assume that limb→∞ supα P (|Xα| > b) = 0. Fix some ε > 0. Then
there exists B such that, for all b > B, supα P(|Xα| > b) < ε. Then if µα is
the probability measure corresponding to Xα, we have supα µα([−b, b]) > 1−ε
for all b > B. Then µα([−B − ε, B + ε]) > 1− ε for all α.

Now assume that, for every ε > 0, there exists a compact interval [a, b] such
that µα([a, b]) > 1− ε for all α. Fix ε > 0. Then there exists [a0, b0] such that
supα µα([a0, b0]) > 1 − ε. If Xα is the random variable corresponding to µα,
then this is equivalent to supα P(a0 ≤ Xα ≤ b0) > 1− ε.

Let c = max{|a0|, |b0|}. Then supα P(|Xα| < c) > 1 − ε, so that we have
supα P(|Xα| > c) < ε. Thus for any ε, we can find a corresponding c such that
supα P(|Xα| > c) < ε.

Example. (A collection of r.v.’s that are not tight)

Theorem 5.8. (Sufficient conditions for tightness, UI)

1. (Tightness) Suppose supα E|Xα| <∞ or ∃φ : [0,∞)→ [0,∞) such that

(a) φ is increasing

(b) φ is increasing as x→∞

(c) supα E[φ|Xα|] <∞

Then {Xα : α ∈ I} is tight.

2. (Uniform integrability) Suppose supα E(|Xα|2) < ∞ or ∃φ : [0,∞) → [0,∞)
such that

(a) φ ↑ ∞

(b) φ/x ↑ ∞

(c) supα E[φ|Xα|] <∞
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Then {Xα : α ∈ I} is uniformly integrable.

Proof. We prove only the first condition of the first part (tightness).

Suppose supα E|Xα| = c <∞. Then:

P(|Xα| > b) ≤ E|Xα|/b (by Markov)

≤ c/b
sup
α

P(|Xα| > b) ≤ c/b

Sending b→∞ gives the definition of tightness.

Definition. (Extended distribution function/EDF)

An extended distribution function is a function G : R→ R such that

1. G is increasing

2. G is right-continuous

3. limx→−∞G(x) ≥ 0 and limx→∞G(x) ≤ 1

Remark. Any distribution function satisfies the definition of an EDF with

lim
x→−∞

G(x) = 0 and lim
x→∞

G(x) = 1

Theorem 5.9. (Helly’s selection theorem)

Suppose {Fn}n≥1 is a sequence of CDF’s. Then there exists a subsequence {Fnj}j≥1

and an extended distribution function G such that Fnj (x)→ G(x) for all contin-
uous points x of G.

Proof. The proof has two steps:

1. Construct G:

Let Q = {q1, q2, . . .} be a denumeration of Q. Define a function G0 on Q by
considering each point sequentially:

Consider q1. {Fn(q1)}n≥1 has a convergent subsequence by Bolzano-Weierstrass.
Denote the corresponding subsequence of functions by {Fn(1,j)} and define:

G0(q1) = lim
j→∞

Fn(1,j)(q1)

Now consider q2. {Fn(1,j)(q2)} itself has a further convergent subsequence
by Bolzano-Weierstrass. Denote the corresponding subsequence of functions
by {Fn(2,j)} and define:

G0(q2) = lim
j→∞

Fn(2,j)(q2)

and so on.

Now set ni = n(i, i). Then {Fni} is a subsequence of each {Fn(i,j)}. Thus for
every q ∈ Q, we have Fni(q)→ G0(q) as i→∞.
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Now G0 is defined only on Q. So define the extension to R by:

G(x) = inf
q>x
{G0(q)}, x ∈ R

2. Show that G is an EDF:

0 ≤ G(x) ≤ 1 since 0 ≤ Fn(x) ≤ 1 for all n, and G is non-decreasing since
each of the Fn’s are non-decreasing. To see that G is right-continuous, fix
x ∈ R and ε > 0.

By definition of inf, there exists q0 ∈ Q such that G0(q0) < G(x) + ε. Then
since G is non-decreasing, if x ≤ y < q0 then G(y) ≤ G0(q0) < G(x) + ε.
That is, for y ≥ x, whenever y − x < q0 then G(y) − G(x) < ε. So G is
right-continuous.

3. Show convergence at all continuous points:

Let x be a continuous point of G. We show that lim supj→∞ Fnj (x) ≤ G(x)
and lim infj→∞ Fnj (x) ≥ G(x).

Fix q ∈ Q > x. Then Fnj (x) ≤ Fnj (q) and:

lim sup
j→∞

Fnj (x) ≤ lim sup
j→∞

Fnj (q) = G0(q)

This inequality holds for all q > x, so it also holds for infq>x. Apply the
definition of G(x).

The proof for lim infj→∞ Fnj (x) is exactly analogous.

Corollary 5.10. Suppose the {Fn}n≥1 in Helly’s selection theorem are tight.
Then G is a distribution function.

Proof. We first show limb→−∞G(b) = 0. We have just shown that for any
continuous point b of G,

lim
j→∞

Fnj (b) = lim sup
j→∞

Fnj (b) = G(b)

This immediately implies that

sup
n
Fn(b) ≥ lim sup

n→∞
Fn(b) ≥ G(b)

Now since {Fn}n≥1 is tight, limb→∞ supn
[
Fn(−b) + (1− Fn(−b))

]
= 0.

This implies that limb→−∞ supn Fn(b) = 0, which gives the result when com-
bined with the above inequality.

The proof for limb→∞G(b) = 1 is exactly analogous, using the fact that
tightness also implies limb→∞ infn

[
Fn(b) + (1− Fn(b))

]
= 0.
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Corollary 5.11. (Subsequence trick)

Suppose {Xn}n≥1 are tight and X is some fixed distribution/random variable. By
Helly’s theorem, for any subsequence {Xmj}j≥1 there exists a further subsequence
{Xnj}j≥1 and some Y such that

Xnj
d−→ Y as j →∞

If Y
d
=X for any subsequence {mj}j≥1, then Xn

d−→ X.

Proof. (by contradiction)

If Xn
d9 X, then there exists ε > 0, a continuous point x of Fx, and some

subsequence mk ↑ ∞ such that∣∣∣P(Xmj ≤ x)− P(X ≤ x)
∣∣∣ > ε ∀mj

This leads to the obvious contradiction.

5.3 Characteristic functions

Fact. (Two basic facts about z ∈ C)

Representation: z = x+ iy. Then:

1. |z| =
√
x2 + y2

2. For x ∈ R, eix = cosx+ i sinx (i.e. eix is on the unit circle of C)

Fact. (Two basic facts about a C-valued random variable Z)

Representation: Z = X + iY where X,Y are real-valued. Then:

1. EZ = EX + iEY

2. Jensen’s inequality: |EZ| ≤ E|Z|

Definition. (Characteristic function)

Suppose X is a real-valued r.v. Then the characteristic function of X is:

φx(t) = Eeitx, t ∈ R
= E(cos(tx) + i sin(tx))

Corollary 5.12. (Three easy facts)

1. Since eitx is on the unit circle in C, then

|Eeitx| ≤ E|eitx| ≤ 1

2. The CF of a sum of independent r.v.’s is the product of the CF of each of the
individual r.v.’s.
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3. If µ is the distribution of X, then

φX(t) =

∫
Ω

eitx(ω) dP =

∫
R
eitx dµ(x)

Theorem 5.13. (CF’s are continuous everywhere)

For any r.v. X and any t ∈ R, φX(t+ h)→ φX(t) as h→ 0.

Proof. ∣∣∣φX(t+ h)− φX(t)
∣∣∣ =

∣∣∣E(ei(t+h)X − eitX)
∣∣∣

=
∣∣∣E(eitX(eihX − 1))

∣∣∣
≤ E

[
|eitX | · |eihX − 1|

]
= E

∣∣∣eihX − 1
∣∣∣

Now observe that |eihX − 1| → 0 as h→ 0 and apply DCT using:

|eihX − 1| ≤ |eihX |+ 1 = 2

Theorem 5.14. (The inversion formulas)

1. Suppose X has distribution µ and CF φX(·). Then for real a < b:

µ((a, b)) +
1

2
µ({a}) +

1

2
µ({b}) = lim

T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
· φX(t) dt

2. If X has density fX(·) with respect to Lebesgue measure, then:

φX(t) = Eeitx =

∫ ∞
−∞

eitx · fX(x) dx

And we have:

fX(x) =
1

2π

∫ ∞
−∞

e−itx · φX(t) dt

Remark. These formulas explicitly link CF’s and distributions, showing that
if two r.v.’s have the same CF, then they have the same distribution.

Example. (Two easy examples)

1. (Sum of normal r.v.’s)

If X ∼ N(µ, σ2), then φX(t) = exp(itµ− (t2σ2)/2).

Suppose X1 ∼ N(0, σ2
1) ⊥ X2 ∼ N(0, σ2

2). Then:

φX1+X2
(t) = exp

(
− t

2σ2
1

2

)
· exp

(
− t

2σ2
2

2

)
= exp

(
− t

2

2
(σ2

1 + σ2
2)

)
therefore X1 +X2 ∼ N(0, σ2

1 + σ2
2).

92



2. (Exponential r.v.’s)

Let X ∼ exp(1), with φX(t) =
∫∞

0
eitxe−x dx = 1

1−it .

Suppose Y is double exponential. Then

fY (y) =
1

2
exp(−|y|) =

1

2
dist(X) +

1

2
dist(−X)

Therefore we have:

φY (t) =
1

2
φX(t) +

1

2
φ−Y (t)

=
1

2
φX(t) +

1

2
φY (−t)

=
1

2
· 1

1− it
+

1

2
· 1

1 + it

=
1

2
· 2

1− i2t2

=
1

1 + t2

which is the CF of a standard Cauchy distribution.

Theorem 5.15. (Dual pairs)

Let φX be the CF of a r.v. X.

Assume φX(t) ∈ R+ \ {0} for all t ∈ R and
∫∞
−∞ φX(t) dt <∞. Then:

1. φX(t)
2πfX(0) is a pdf

2. If Y has the above pdf φX(t)
2πfX(0) , then φY (t) = fX(t)

fX(0) .

Proof. We prove the two parts in order:

1. Let φX be a CF satisfying the conditions of (1). Note φX(t) ∈ (0, 1]. We need
to show that the quantity integrates to 1. By the second inversion formula,

fX(x) =
1

2π

∫ ∞
−∞

e−itx · φX(t) dt, fX(0) =
1

2π

∫ ∞
−∞

φX(t) dt

Therefore we have: ∫ ∞
−∞

1

2πfX(0)
· φX(t) dt = 1

2. First, note that if φX ∈ R, then it has no imaginary component:

φX(t) = E(cos(tx)) + i · E(sin(tx)) = E(cos(tx))

Then since cos(tx) = cos(−tx), φX is symmetric about 0. Now write φY as a
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function x to avoid confusion later:

φY (x) = Eeixy

=

∫ ∞
−∞

eixy · fY (y) dy

=

∫ ∞
−∞

eixy · φX(y)

2πfX(0)
dy

Now since we are integrating over the entire real line, we can make the change
of variable t = −y and use symmetry of φX to obtain:

φY (x) =

∫ ∞
−∞

e−ixt · φX(t)

2πfX(0)
dt

Applying the second inversion formula gives the result.

Example. (Double exponential/Cauchy)

Let X ∼ double exponential. Then we have

fX(x) =
1

2
exp(−|x|), φX(t) =

1

1 + t2

Then the dual density is Cauchy:

fY (t) =
φX(t)

2πfX(0)
=

1

π(1 + t2)

with corresponding CF:

φY (t) =
fX(t)

fX(0)
= e−|t|

Also note that the sample mean of independent Cauchy r.v.’s is again Cauchy:

φȲ (t) = φSn(t/n) =

n∏
i=1

φYi(t/n) = e−|t|

5.4 The continuity theorem, iid CLT

Fact. (Important identity for e)

If cn → c ∈ C, then (1 + cn/n)n → ec.

Theorem 5.16. (Parseval identity)

Suppose µ, ν are probability measures on R (e.g. distributions of some random
variables X,Y ). The corresponding CF’s are:

φµ(t) =

∫ ∞
−∞

eitx dµ(x), φν(t) =

∫ ∞
−∞

eitx dν(x)

Then in fact: ∫ ∞
−∞

φµ(t) dν(t) =

∫ ∞
−∞

φν(t) dµ(t)
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Remark. This tells us that we can always get information about a probability
measure µ using its CF φµ and a ”good” probability measure ν of one’s choice.

Proof. Suppose X ∼ µ ⊥ Y ∼ ν. Then:

EeiXY = E
[
E(eiXY |Y )

]
= E(φX(Y ))

=

∫ ∞
−∞

φµ(t) dν(t)

Conditioning with respect to X and following the same steps gives the other
side of the equality.

Corollary 5.17. If µ is some probability measure and X ∼ µ, then:

E
[

sin(cx)

cx

]
=

1

2c

∫ c

−c
φµ(t) dt

Proof. We apply Parseval’s identity with ν = the Uniform probability measure
on [−c, c] for c > 0. The density is: fν(x) = 1/2c, −c < x < c, so the
characteristic function is:

φν(t) =

∫ c

−c
eitx · 1

2c
dx

=

∫ c

−c

cos(tx)

2c
dx+ i

∫ c

−c

sin(tx)

2c
dx

=

∫ c

−c

cos(tx)

2c
dx

=
sin(tc)

tc

Now let µ be a probability measure on R. The LHS in Parseval’s identity is:∫ ∞
−∞

φµ(t) dν(t) =
1

2c

∫ c

−c
φµ(t) dt

And the RHS is:∫ ∞
−∞

φν(t) dµ(t) =

∫ ∞
−∞

sin(tc)

tc
dµ(t) = E

[
sin(cx)

cx

]
Where the last equality follows because X ∼ µ. Therefore LHS = RHS by
Parseval and we are done.

Theorem 5.18. (Converse to continuity theorem)

Suppose Xn
d−→ X. Then φXn(t)→ φX(t) for all t ∈ R.

Proof. If Xn
d−→ X, then Eg(Xn)→ Eg(X) for all bdd cts fns g.
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Theorem 5.19. (Continuity theorem)

Suppose {Xn}n≥1 are real-valued r.v.’s with corresponding CF’s {φn}n≥1. Suppose
there exists some function φ∞(t) such that ∀t ∈ R, φn(t)→ φ∞(t). If either of the
following hold:

1. {Xn}n≥1 is tight.

2. φ∞(t)→ 1 as t→ 0

Then Xn
d−→ X, where φX(t) = φ∞(t).

Remark. Since CF’s are continuous everywhere, then they are continuous at
0. Also, φ(0) = 1 for any CF φ. Thus if one can show that φ∞ is a CF of
some r.v., then (2) is automatically satisfied.

Proof. We first show (1), and then show that (2) implies (1).

1. Assume {Xn}n≥1 is tight.

Then given any subsequence {mj} ↑ ∞, there exists a further subsequence

{nj} ⊂ {mj} such that Xnj
d−→ Y as j →∞. Thus φnj (t)→ φY (t) for some

Y . But since φn(t)→ φ∞(t), then by uniqueness of limits φY (t) = φ∞(t).

Thus since this holds for arbitrary subsequences and CF’s uniquely charac-
terize distributions, then for any subsequence {mj}, there exists a further

subsequence {nj} such that Xnj
d−→ Y . Thus by the subsequence trick,

Xn
d−→ Y where Y has CF φ∞(t).

2. We want to show that lim supk→∞ supn P(|Xn| > k) = 0. First observe that:

P(|Xn| > k) ≤ 2 · E
[(

1− k

2|Xn|

)
· 1|Xn|>k

]
To see this, note that if |Xn| = k, then (1− k

2|Xn| ) = 1
2 and the relation holds

with equality. Then note that on the set |Xn| > k we have (1 − k
2|Xn| ) >

1
2 .

Now in order to introduce CF’s into the picture,

P(|Xn| > k) ≤ 2 · E
[(

1− 1

c|Xn|

)
· 1|Xn|>k

]
(c = 2/k)

≤ 2 · E
[(

1− sin(c|Xn|)
c|Xn|

)
· 1|Xn|>k

]
= 2 · E

[(
1− sin(cXn)

cXn

)
· 1|Xn|>k

]
≤ 2 · E

[
1− sin(cXn)

cXn

]
Applying the corollary to Parseval’s identity, we obtain

P(|Xn| > k) ≤ 1

c

∫ c

−c
(1− φn(t)) dt
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Now φn(t)→ φ∞(t) as n→∞ and |φn(t)| ≤ 1 for all n, so by DCT,∫ c

−c
(1− φn(t)) dt→

∫ c

−c
(1− φ∞(t)) dt

Thus we can take limsups of both sides in the above inequality to obtain:

lim sup
n→∞

P(|Xn| > k) ≤ 1

c

∫ c

−c
(1− φ∞(t)) dt

We want to show that limk→∞ LHS equals zero. Since c = 2
k , then it is

equivalent to show that limc→0 RHS equals zero.To see this, note that the
condition φ∞(t)→ 1 as t→ 0 guarantees that:

lim
c→0

∫ c

−c
(1− φ∞(t)) dt = 0

Therefore by an application of L’Hopital’s rule:

lim
c→∞

1

c

∫ c

−c
(1− φ∞(t)) dt = 0

Thus we have shown lim supk lim supn P(|Xn| > k) = 0.

Fact. (Inequality from complex analysis)∣∣∣∣∣ eiy −
m∑
k=0

(iy)k

k!

∣∣∣∣∣ ≤ min

{
2|y|m

m!
,
|y|m+1

(m+ 1)!

}
Lemma 5.20. (Expansion lemma)

Fix m ≥ 1 and let X be such that E(|X|m) <∞. Then:

φX(t) =

m∑
k=0

(it)k

k!
E(Xk) + o (|t|m) as t→ 0

Remark. What is the motivation for this? Note the deterministic identity:

eitx =

∞∑
m=0

(itx)m

m!

which suggests possibly:

E(eitx) =

∞∑
m=0

E
[

(itx)m

m!

]
?
=

∞∑
m=0

(it)m

m!
E(Xm)

Proof. Using y = tx in the above inequality and applying Jensen’s inequality,
we can bound the remainder:∣∣∣∣∣ E(eitx)−

m∑
k=0

(it)k

k!
E(Xk)

∣∣∣∣∣ ≤ E
[
min

{
2|t|m|X|m

m!
,
|t|m+1|X|m+1

(m+ 1)!

}]
=
|t|m

m!
· E
[
min

{
2|X|m, |t| · |X|

m+1

m+ 1

}]
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We want to show that the RHS is o (|t|m). So if we divide the RHS by |t|m,
then we only need to show that the expectation → 0 as t→ 0.

Let zt = min{·, ·}. Note that zt → 0 as t→ 0, and there exists t0 such that:

|zt| ≤ 2|X|m ∀ |t| < |t0|

And since E(|X|m) <∞, then the result follows by DCT.

Theorem 5.21. (Weak Law of Large Numbers)

Let {Yi}i≥1 be iid and E|Yi| <∞. Let EYi = µ. Then Sn/n
d−→ µ.

Remark. This implies Sn/n
P−→ µ since µ is a constant.

Proof. We want to show that φSn/n(t)→ φµ(t) = eitµ. Note:

φSn/n(t) = E
[
eit(Sn/n)

]
= φSn(t/n)

=
(
φYi(t/n)

)n
=

[
1 +

n(φYi(t/n)− 1)

n

]n
So by the identity at the beginning of the section, we want to show that
n(φYi(t/n)− 1)→ itµ. By the expansion lemma,

φYi(t/n) = 1 +
itµ

n
+ o (|t|/n)

Therefore:

n(φYi(t/n)− 1) = itµ+ n · o (|t|/n)

= itµ+ |t| · o (|t|/n)

|t|/n
→ itµ as n→∞

Theorem 5.22. (iid Central Limit Theorem)

Let {Yi}i≥1 be iid with EYi = 0 and EY 2
i = σ2 <∞. Then Sn/

√
n→ N(0, σ2).

Proof. By the continuity theorem, sufficient to show that for fixed t ∈ R,

φSn/n(t)→ exp

(
− t

2σ2

2

)
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As in the proof of the WLLN above,

φSn/
√
n(t) = φSn(t/

√
n)

=
(
φYi(t/

√
n)
)n

=

[
1 +

n(φYi(t/
√
n)− 1)

n

]n
Again, we need to show that n(φYi(t/

√
n)− 1)→ −t2σ2/2. By the expansion

lemma,

φYi(t) = 1 + itEYi +
i2t2

2
EY 2

i + o
(
|t|2
)

= 1− t2σ2

2
+ o

(
|t|2
)

φYi(t/
√
n) = 1− t2σ2

2n
+ o

(
|t|2/n

)
This gives us that:

n(φYi(t/
√
n)− 1) = − t

2σ2

2
+ n · o

(
|t|2/n

)
Noting that n · o

(
|t|2/n

)
→ 0 as n→∞ completes the proof.

5.5 Lindeberg-Feller CLT

Lemma 5.23. (Important fact)

Suppose w1, . . . , wn and z1, . . . , zn are ∈ C with |wi| ≤ 1, |zi| ≤ 1. Then:∣∣∣∣∣
n∏
i=1

wi −
n∏
i=1

zi

∣∣∣∣∣ ≤
n∑
i=1

|wi − zi|

Proof. Expand the difference of products inside the modulus like so:

n∏
i=1

wi −
n∏
i=1

zi =

(
n∏
i=1

wi − z1

n∏
i=2

wi

)

+

(
z1

n∏
i=2

wi − z1z2

n∏
i=3

wi

)

+

(
z1z2

n∏
i=3

wi − . . .

)
+ (. . .+ z1z2 . . . zn−1wn)− z1z2 . . . zn

Now note that for the first group in the RHS,∣∣∣∣∣
n∏
i=1

wi − z1

n∏
i=2

wi

∣∣∣∣∣ =

n∏
i=2

|wi| · |w1 − z1| ≤ |w1 − z1|
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And for the second group in the RHS,∣∣∣∣∣ z1

n∏
i=2

wi − z1z2

n∏
i=3

wi

∣∣∣∣∣ = z1

∏̇n

i=3
|wi| · |w2 − z2| ≤ |w2 − z2|

And so on.

Theorem 5.24. (Lindeberg-Feller CLT)

Let Xn,k for k ≤ n, n ≥ 1 be a triangular array of mean-zero random variables with
EX2

n,i = σ2
n,i <∞. Assume that:

1. Within n, Xn,1, . . . , Xn,n are defined on the same probability space and are
independent.

2. There exists σ2 <∞ such that
∑n
i=1 σ

2
n,i → σ2 as n→∞.

3. For any ε > 0,
∑n
i=1 E(X2

n,i · 1|Xn,i|>ε)→ 0.

Let Sn =
∑n
i=1Xn,i and Var(Sn) =

∑b
i=1 Var(Xn,i) =

∑n
i=1 σ

2
n,i. Then:

Sn
d−→ N(0, σ2)

Proof. Define φn,i(t) = E(eitXn,i). By the expansion lemma,

φSn(t) =

n∏
i=1

φn,i(t) and φn,i(t) = 1−
t2σ2

n,i

2
+ o

(
t2
)

Step 1: show that
∑n
i=1 σ

4
n,i → 0 as n→∞.

First we show that max1≤j≤n σ
2
n,i → 0 as n→∞:

σ2
n,i = E(X2

n,i)

= E(X2
n,i · 1|Xn,i|>ε) + E(X2

n,i · 1|Xn,i|≤ε)

≤
n∑
j=1

E(X2
n,j · 1|Xn,j |>ε) + ε2

The summation in the last step frees the bound from dependence on i. So:

max
1≤i≤n

σ2
n,i ≤

n∑
j=1

E(X2
n,j · 1|Xn,j |>ε) + ε2

The first term in the RHS → 0 as n →∞ by UAN, and since ε2 is arbitrary
then max1≤j≤n σ

2
n,i → 0. Now note that:

n∑
i=1

σ4
n,i ≤ max

1≤j≤n
σ2
n,j ·

n∑
i=1

σ2
n,i

Send n→∞ and apply the result just shown.
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Step 2: show that φSn(t)→
∏n
i=1

[
1− t2σ2

n,i

2

]
as n→∞

To show (2), we combine the lemma at the top of this section with the in-
equality from the previous section:∣∣∣∣∣

n∏
i=1

φn,i(t)−
n∏
i=1

[
1−

t2σ2
n,i

2

] ∣∣∣∣∣ ≤
n∑
i=1

∣∣∣∣φn,i(t)− [1− t2

2
σ2
n,i

]∣∣∣∣
≤

n∑
i=1

E

[
min

{
|t|3|Xn,i|3

3!
,

2t2X2
n,i

2!

}]

=

n∑
i=1

E
[
min

{
t2X2

n,i,
|t|3|Xn,i|3

6

}]

=

n∑
i=1

E
[
min

{
t2X2

n,i,
|t|3|Xn,i|3

6

}
· 1|Xn,i|>ε

]

+

n∑
i=1

E
[
min

{
t2X2

n,i,
|t|3|Xn,i|3

6

}
· 1|Xn,i|<ε

]

≤ |t2|
n∑
i=1

E
(
X2
n,i · 1|Xn,i|>ε

)
+

n∑
i=1

E
(
ε · |t|3 · |Xn,i|2

)
As n→∞, the first term → 0 by UAN, and the second term → ε · |t|3σ2. So,

lim sup
n→∞

∣∣∣∣∣ φSn(t)−
n∏
i=1

[
1−

t2σ2
n,i

2

] ∣∣∣∣∣ ≤ ε · |t|3σ2

Since this holds for any ε > 0, then the remainder → 0 as n→∞ so

φSn(t)→
n∏
i=1

[
1−

t2σ2
n,i

2

]
as n→∞

Step 3: show that
∏n
i=1

[
1− t2σ2

n,i

2

]
→ exp

(
− t

2σ2

2

)
as n→∞

Equivalently, we show
∑n
i=1 log

(
1− t2

2 σ
2
n,i

)
→ − t

2σ2

2 . Note the identity:∣∣∣ log(1− x)− (−x)
∣∣∣ ≤ cx2 for 0 ≤ x ≤ 1

2

Applying this to our series, we obtain:∣∣∣∣∣
n∑
i=1

{
log

(
1−

t2σ2
n,i

2

)
−

(
−
t2σ2

n,i

2

)} ∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

log

(
1−

t2σ2
n,i

2

)
−

(
− t

2

2

n∑
i=1

σ2
n,i

) ∣∣∣∣∣ ≤ t4

4

n∑
i=1

σ4
n,i · c
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The second term in the modulus → t2

2 σ
2 and the RHS sum → 0 by the result

of part 1, and the proof is complete.

Corollary 5.25. (Typical application)

Let {Yn,i}1≤i≤n be independent with EYn,i = 0. Define:

Sn =

n∑
i=1

Yn,i, S2
n =

n∑
i=1

σ2
n,i = Var(Sn)

Suppose that for any ε > 0:

n∑
i=1

E

(
Y 2
n,i

S2
n

· 1|Yn,i/Sn|>ε

)
→ 0

Then Sn/Sn → N(0, 1).

Proof. Let Xn,i = Yn,i/Sn and apply the Lindeberg-Feller CLT.

Theorem 5.26. (Lyapunov’s condition)

Suppose ∃δ > 0 such that

1. E
(
|Yn,i|2+δ

)
<∞ for all 1 ≤ i ≤ n

2. Ln =
∑n
i=1 E

(
|Yn,i|2+δ

)
/S2+δ

n → 0

Where Sn =
√∑n

i=1 E(X2
n,i) =

√
Var(Sn). Then Sn/Sn → N(0, 1).

Proof. We show that the condition of the ”Typical application” is satisfied.

Fix some ε > 0. Note that:

Y 2
n,i

S2
n

· 1|Yn,i|/Sn>ε ≤
Y 2
n,i

S2
n

(
|Yn,i|
ε · Sn

)δ
Therefore it follows that:

n∑
i=1

E

{
Y 2
n,i

S2
n

· 1|Yn,i|/Sn>ε

}
≤ Ln

εδ
→ 0 as n→∞
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